Home
Class 11
MATHS
If cos 18^(@) - sin 18^(@) = k sin 27...

If ` cos 18^(@) - sin 18^(@) = k sin 27^(@) , ` then k =

A

` (1)/(sqrt2) `

B

` sqrt2`

C

` (2)/(2sqrt2)`

D

`2 sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -B |10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-C |9 Videos

Similar Questions

Explore conceptually related problems

3 cos 72 ^(@) -4 sin ^(3) 18^(@) = cos 36 ^(@).

Prove that: cos 18^0 - sin 18^0 = sqrt(2) sin 27^0

Prove that: cos 18^0 - sin 18^0 = sqrt(2) sin 27^0

If y=5 (sin 100^(@)cos 27^(@) +cos 100^(@)sin 27^(@)) the value of y is :-

Evaluate : (cos 75^(@))/ (sin 15^(@)) + (sin 12^(@))/ (cos 78^(@)) - (cos 18^(@))/ (sin 72^(@))

cos ^(2) 36^(@) + sin ^(2) 18^(@) = (3)/(4).

Prove that : cos 36 ^(@) - sin 18^(@) = (1)/(2).

Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

Prove that sin 12^(@) sin18^(@)sin42^(@) sin48^(@) sin 72^(@) sin78^(@)=(cos18^(@))/(32) .

If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@) , K in (0, 90^(@)) , then K= _____.