Home
Class 11
MATHS
If underset( x to a ) lim (x^(5) - a^(...

If ` underset( x to a ) lim (x^(5) - a^(5))/( x-a) = 405` , then possible values ( s ) of a:

A

`1`

B

`-1`

C

`+-3`

D

`0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow these steps: ### Step 1: Set up the limit expression We start with the limit expression: \[ \lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405 \] ### Step 2: Identify the indeterminate form If we substitute \(x = a\) directly into the expression, we get: \[ \frac{a^5 - a^5}{a - a} = \frac{0}{0} \] This is an indeterminate form, which means we can apply L'Hospital's Rule. ### Step 3: Apply L'Hospital's Rule According to L'Hospital's Rule, we differentiate the numerator and denominator: - The derivative of the numerator \(x^5 - a^5\) with respect to \(x\) is \(5x^4\). - The derivative of the denominator \(x - a\) with respect to \(x\) is \(1\). Thus, we rewrite the limit as: \[ \lim_{x \to a} \frac{5x^4}{1} \] ### Step 4: Evaluate the limit Now we can substitute \(x = a\) into the simplified expression: \[ 5a^4 = 405 \] ### Step 5: Solve for \(a^4\) To find \(a^4\), we divide both sides by 5: \[ a^4 = \frac{405}{5} = 81 \] ### Step 6: Solve for \(a\) Now we take the fourth root of both sides: \[ a = \pm 3 \] ### Conclusion The possible values of \(a\) are: \[ a = 3 \quad \text{or} \quad a = -3 \] Thus, the correct answer is option (C) \( \pm 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -B |10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-C |9 Videos

Similar Questions

Explore conceptually related problems

If Lim_(x to a) (x^(5)-a^(5))/(x-a) = 405 , find all possible values of a .

If Lim_(x to a) (x^(9)-a^(9))/(x-a) = 9 , find all possible values of a .

If lim_(x to a) (x^(5) + a^(5))/(x + a) = 405 , Find the value of a.

Evaluate : underset( x to 0 ) lim (x) ^((1)/(log x))

If Lim_(x to -a) (x^(9)+a^(9))/(x+a) = 9 , find all possible values of a .

If lim_(x->a) (x^5-a^5)/(x-a)=5 , then find the sum of the possible real values of a.

If lim_(x->a) (x^5-a^5)/(x-a)=5 , then find the sum of the possible real values of a.

lim_(x->0)(e^(5x) - 1)/(3x)

Evaluate underset(xto3)"lim"((x^(2)-9))/((x-3))

Evaluate underset(x to oo) lim ([x])/(2x)