Home
Class 11
MATHS
Find the value of cos {npi +(-1) ^(n) (...

Find the value of ` cos {npi +(-1) ^(n) (pi)/(3)} `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos(n\pi + (-1)^n \frac{\pi}{3}) \), we can break it down into two cases based on whether \( n \) is odd or even. ### Step 1: Identify the cases for \( n \) - **Case 1:** \( n \) is odd (e.g., \( n = 1, 3, 5, \ldots \)) - **Case 2:** \( n \) is even (e.g., \( n = 0, 2, 4, \ldots \)) ### Step 2: Evaluate for odd \( n \) When \( n \) is odd: - \( (-1)^n = -1 \) - Therefore, the expression becomes: \[ \cos(n\pi - \frac{\pi}{3}) \] - Using the cosine subtraction formula: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] - Here, \( a = n\pi \) and \( b = \frac{\pi}{3} \): \[ \cos(n\pi - \frac{\pi}{3}) = \cos(n\pi)\cos(\frac{\pi}{3}) + \sin(n\pi)\sin(\frac{\pi}{3}) \] - Since \( \cos(n\pi) = -1 \) (for odd \( n \)) and \( \sin(n\pi) = 0 \): \[ \cos(n\pi - \frac{\pi}{3}) = -1 \cdot \frac{1}{2} + 0 \cdot \frac{\sqrt{3}}{2} = -\frac{1}{2} \] ### Step 3: Evaluate for even \( n \) When \( n \) is even: - \( (-1)^n = 1 \) - Therefore, the expression becomes: \[ \cos(n\pi + \frac{\pi}{3}) \] - Using the cosine addition formula: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] - Here, \( a = n\pi \) and \( b = \frac{\pi}{3} \): \[ \cos(n\pi + \frac{\pi}{3}) = \cos(n\pi)\cos(\frac{\pi}{3}) - \sin(n\pi)\sin(\frac{\pi}{3}) \] - Since \( \cos(n\pi) = 1 \) (for even \( n \)) and \( \sin(n\pi) = 0 \): \[ \cos(n\pi + \frac{\pi}{3}) = 1 \cdot \frac{1}{2} - 0 \cdot \frac{\sqrt{3}}{2} = \frac{1}{2} \] ### Conclusion - If \( n \) is odd, \( \cos(n\pi + (-1)^n \frac{\pi}{3}) = -\frac{1}{2} \) - If \( n \) is even, \( \cos(n\pi + (-1)^n \frac{\pi}{3}) = \frac{1}{2} \) ### Final Answer \[ \cos(n\pi + (-1)^n \frac{\pi}{3}) = \begin{cases} -\frac{1}{2} & \text{if } n \text{ is odd} \\ \frac{1}{2} & \text{if } n \text{ is even} \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -B |10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-C |9 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(-1)(cos (14pi)/(3)) is

Find the value of : sin{cos("cos"^(-1)(3pi)/4)}

Find the value of : cos[(pi)/3-"sin"^(-1)(-1/2)]

The value of cos^(-1)(cos'(3pi)/(2)) is

The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

If the middle term in the expansion of (1/x+xsinx)^(10) is equal to 7 7/8 , then the value of x is (i) 2npi+(pi)/6 (ii) npi+(pi)/6 (iii) npi+(-1)^(n)(pi)/6 (iv) npi+(-1)^(n)(pi)/3

Find the principal value of tan^(-1){cos((3pi)/2)}

Find the value of 2cos^3(pi/7)-cos^2(pi/7)-cos(pi/7)

Find the value of |{:(cos((2pi)/(63)),,cos((3pi)/(70)),,cos((4pi)/(77))),(cos((pi)/(72)),,cos((2pi)/(80)),,cos((3pi)/(88))),(1,,cos((pi)/(90)),,cos((2pi)/(99))):}|

If sinx+cosy=1 and cos2x-cos2y=1 then the values of x and y are (A) x=npi+(-1)^n pi/3, n in I, y=mpi+-pi/6, m in I (B) x=npi+(-1)^n pi/6, n in I, y=mpi+-pi/3, m in I (C) x=npi+(-1)^n pi/4, n in I, y=mpi+-pi/4, m in I (D) none of these