Home
Class 11
MATHS
Find the modulus and amplitude of ( 2+ ...

Find the modulus and amplitude of ` ( 2+ i)/( 4i +(1+i) ^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and amplitude of the complex number \( z = \frac{2 + i}{4i + (1 + i)^2} \), we will follow these steps: ### Step 1: Simplify the denominator First, we need to simplify the denominator \( 4i + (1 + i)^2 \). \[ (1 + i)^2 = 1^2 + 2(1)(i) + i^2 = 1 + 2i - 1 = 2i \] Now substitute this back into the denominator: \[ 4i + (1 + i)^2 = 4i + 2i = 6i \] ### Step 2: Rewrite the complex number Now we can rewrite \( z \): \[ z = \frac{2 + i}{6i} \] ### Step 3: Separate the real and imaginary parts We can separate the terms in the fraction: \[ z = \frac{2}{6i} + \frac{i}{6i} = \frac{2}{6i} + \frac{1}{6} \] ### Step 4: Simplify the first term To simplify \( \frac{2}{6i} \), we multiply the numerator and denominator by \( -i \): \[ \frac{2}{6i} = \frac{2 \cdot (-i)}{6i \cdot (-i)} = \frac{-2i}{-6} = \frac{-i}{3} \] Now substituting this back into \( z \): \[ z = \frac{-i}{3} + \frac{1}{6} \] ### Step 5: Combine the terms Now we can express \( z \) in the standard form \( x + iy \): \[ z = \frac{1}{6} - \frac{1}{3}i \] ### Step 6: Identify the real and imaginary parts From \( z = \frac{1}{6} - \frac{1}{3}i \), we identify: - Real part \( x = \frac{1}{6} \) - Imaginary part \( y = -\frac{1}{3} \) ### Step 7: Calculate the modulus The modulus \( |z| \) is given by: \[ |z| = \sqrt{x^2 + y^2} = \sqrt{\left(\frac{1}{6}\right)^2 + \left(-\frac{1}{3}\right)^2} \] Calculating: \[ |z| = \sqrt{\frac{1}{36} + \frac{1}{9}} = \sqrt{\frac{1}{36} + \frac{4}{36}} = \sqrt{\frac{5}{36}} = \frac{\sqrt{5}}{6} \] ### Step 8: Calculate the amplitude The amplitude \( \theta \) is given by: \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{-\frac{1}{3}}{\frac{1}{6}}\right) = \tan^{-1}\left(-2\right) \] ### Final Result Thus, the modulus and amplitude of \( z \) are: - Modulus: \( |z| = \frac{\sqrt{5}}{6} \) - Amplitude: \( \theta = \tan^{-1}(-2) \)
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -B |10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-C |9 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and amplitude of -4i

Find the modulus and amplitude of (2 + 3i)/(3+2i)

The modulus and amplitude of (1+2i)/(1-(1-i)^(2)) are

Find the modulus and argument of -4i.

Find the modulus and amplitude of (-1)/(2)+ (sqrt3)/(2)i

Find the modulus and principal argument of -2i

Find the modulus and argument of the complex number (2 + i)/(4i + (1+ i)^(2))

Find the modulus of ((3+2i) (1+i) (2+3i))/((3+4i) (4+5i))

Find the modulus and argument of the complex number (2+i)/(4i+(1+i)^(2))

Find the modulus and amplitude of the following complex numbers and hence express them into polar form ((1+i)(2+i))/((3+i))