Home
Class 11
MATHS
Find the domain of the functions f(x) =...

Find the domain of the functions ` f(x) = (1)/(sqrt( 4x^(2)-1)) +log _e (x(x^(2) -1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{4x^2 - 1}} + \log_e(x(x^2 - 1)) \), we need to analyze the two components of the function separately. ### Step 1: Analyze the square root in the denominator The first part of the function is \( \frac{1}{\sqrt{4x^2 - 1}} \). For this expression to be defined, the quantity inside the square root must be positive: \[ 4x^2 - 1 > 0 \] This can be rearranged to: \[ 4x^2 > 1 \] Dividing both sides by 4 gives: \[ x^2 > \frac{1}{4} \] Taking the square root of both sides results in: \[ |x| > \frac{1}{2} \] This means: \[ x < -\frac{1}{2} \quad \text{or} \quad x > \frac{1}{2} \] ### Step 2: Analyze the logarithmic function The second part of the function is \( \log_e(x(x^2 - 1)) \). For the logarithm to be defined, the argument must be positive: \[ x(x^2 - 1) > 0 \] Factoring gives: \[ x(x - 1)(x + 1) > 0 \] The critical points are \( x = -1, 0, 1 \). We will test the intervals determined by these points: \( (-\infty, -1) \), \( (-1, 0) \), \( (0, 1) \), and \( (1, \infty) \). - **Interval \( (-\infty, -1) \)**: Choose \( x = -2 \): \[ -2(-2 - 1)(-2 + 1) = -2(-3)(-1) = -6 \quad (\text{negative}) \] - **Interval \( (-1, 0) \)**: Choose \( x = -0.5 \): \[ -0.5(-0.5 - 1)(-0.5 + 1) = -0.5(-1.5)(0.5) = 0.375 \quad (\text{positive}) \] - **Interval \( (0, 1) \)**: Choose \( x = 0.5 \): \[ 0.5(0.5 - 1)(0.5 + 1) = 0.5(-0.5)(1.5) = -0.375 \quad (\text{negative}) \] - **Interval \( (1, \infty) \)**: Choose \( x = 2 \): \[ 2(2 - 1)(2 + 1) = 2(1)(3) = 6 \quad (\text{positive}) \] From this analysis, we find that \( x(x^2 - 1) > 0 \) in the intervals \( (-1, 0) \) and \( (1, \infty) \). ### Step 3: Find the intersection of the two conditions Now, we need to find the intersection of the two conditions: 1. From the square root: \( (-\infty, -\frac{1}{2}) \cup (\frac{1}{2}, \infty) \) 2. From the logarithm: \( (-1, 0) \cup (1, \infty) \) The intersection is: - For \( (-\infty, -\frac{1}{2}) \) and \( (-1, 0) \): The intersection is \( (-1, -\frac{1}{2}) \). - For \( (\frac{1}{2}, \infty) \) and \( (1, \infty) \): The intersection is \( (1, \infty) \). ### Final Domain Thus, the domain of \( f(x) \) is: \[ \text{Domain: } x \in (-1, -\frac{1}{2}) \cup (1, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -B |10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-C |9 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x) = sin^-1 sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

The domain of the function f(x)=1/(sqrt(4x-|x^2-10 x+9|)) is

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function f(x) = sqrt( 4 - x) + (1)/( sqrt( x^(2) - 1))

Find the domain of function f(x)=3/(sqrt(4-x^(2)))log(x^(3)-x)

Domain of the function f(x) = sin(ln(sqrt(4-x^2)/(1-x))) is

Domain of the function f(x)=(1)/(log(2-x)) is