Home
Class 11
MATHS
Find r(x,y) if Cov (x,y) = -165 , Var( ...

Find r(x,y) if Cov (x,y) = -165 , Var( x)= 2.25 and Var(y)= 144.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( r(x,y) \), we will use the formula for the correlation coefficient: \[ r(x,y) = \frac{\text{Cov}(x,y)}{\sqrt{\text{Var}(x) \cdot \text{Var}(y)}} \] ### Step 1: Identify the given values - Covariance \( \text{Cov}(x,y) = -165 \) - Variance \( \text{Var}(x) = 2.25 \) - Variance \( \text{Var}(y) = 144 \) ### Step 2: Substitute the values into the formula We can substitute the values into the formula: \[ r(x,y) = \frac{-165}{\sqrt{2.25 \cdot 144}} \] ### Step 3: Calculate the product of the variances Now we need to calculate \( \sqrt{2.25 \cdot 144} \). First, calculate \( 2.25 \cdot 144 \): \[ 2.25 \cdot 144 = 324 \] ### Step 4: Calculate the square root Next, we find the square root of 324: \[ \sqrt{324} = 18 \] ### Step 5: Substitute back into the formula Now we substitute this back into our formula for \( r(x,y) \): \[ r(x,y) = \frac{-165}{18} \] ### Step 6: Simplify the fraction To simplify \( \frac{-165}{18} \), we can divide both the numerator and the denominator by 3: \[ r(x,y) = \frac{-55}{6} \] ### Step 7: Convert to decimal (if needed) Now, we can convert \( \frac{-55}{6} \) into decimal form: \[ r(x,y) \approx -9.17 \] ### Final Answer Thus, the correlation coefficient \( r(x,y) \) is: \[ r(x,y) \approx -9.17 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -B |10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-C |9 Videos

Similar Questions

Explore conceptually related problems

Find r(x,y) if cov (x,y) =-16.5, var(x)=2.25 and sigma_(y)=12

Find the coefficient of correlation, when Cov(x, y) = -16.5, Var(x)= 100, Var(y)=2.89.

If cov(X, Y)= 16.5, Var(X)= 8.25" and "Var(Y)= 33 , then Karl Pearson's coefficient of correlation between X and Y is

If Cov(x,y) = -2, Sigma y = 30 , Sigma x = 25 and Sigma xy = 140 , find the number of observations .

IF cov(X, Y)= -8, Var(X)= 1.44" and "Var(Y)= 100 , then coefficient of correlation between X and Y is

You are given the following results on two variables X and Y: barx=36, bary=85, sigma_(x) =11 , Var (Y) = 64 and r (X, Y) = 0.66. Find the regression equations and estimate the value of x when y= 75.

Find the domain and the range of the relation R given by R = { (x,y) : y = x+6/x , where x y in N and x lt 6 }

If barx =18, bary=100 , Var(X)=196, Var(Y) = 400 and p(X,Y) = 0.8, find the regression lines. Extimate the value of y when x = 70 and that of x when y = 90.

If sum x_(1) = 16, sum y_(1) = 48 sum (x_(1) - 3) (y_(1) - 4) = 22 and n = 2 , find the cov (x,y).