Home
Class 11
MATHS
Eccentricity of the conic 7y^(2) - 9x^...

Eccentricity of the conic ` 7y^(2) - 9x^(2) +54 x - 28y -116 =0 ` is

A

`(3)/(2)`

B

` ( 4)/(3)`

C

` (3)/(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the eccentricity of the conic given by the equation \( 7y^2 - 9x^2 + 54x - 28y - 116 = 0 \), we will follow these steps: ### Step 1: Rearranging the equation We start with the equation: \[ 7y^2 - 9x^2 + 54x - 28y - 116 = 0 \] Rearranging it gives: \[ 7y^2 - 28y - 9x^2 + 54x = 116 \] ### Step 2: Completing the square for \(y\) We will complete the square for the \(y\) terms: \[ 7(y^2 - 4y) = 7[(y - 2)^2 - 4] = 7(y - 2)^2 - 28 \] So, substituting back, we have: \[ 7(y - 2)^2 - 28 - 9x^2 + 54x = 116 \] This simplifies to: \[ 7(y - 2)^2 - 9x^2 + 54x - 28 = 116 \] ### Step 3: Completing the square for \(x\) Next, we complete the square for the \(x\) terms: \[ -9(x^2 - 6x) = -9[(x - 3)^2 - 9] = -9(x - 3)^2 + 81 \] Substituting this back gives: \[ 7(y - 2)^2 - 9(x - 3)^2 + 81 - 28 = 116 \] This simplifies to: \[ 7(y - 2)^2 - 9(x - 3)^2 + 53 = 116 \] So we have: \[ 7(y - 2)^2 - 9(x - 3)^2 = 63 \] ### Step 4: Dividing by 63 Now we divide the entire equation by 63: \[ \frac{7(y - 2)^2}{63} - \frac{9(x - 3)^2}{63} = 1 \] This simplifies to: \[ \frac{(y - 2)^2}{9} - \frac{(x - 3)^2}{7} = 1 \] ### Step 5: Identifying the conic type This is the standard form of a hyperbola: \[ \frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} = 1 \] where \(a^2 = 9\) and \(b^2 = 7\). ### Step 6: Calculating the eccentricity For a hyperbola, the eccentricity \(e\) is given by: \[ e = \sqrt{1 + \frac{a^2}{b^2}} \] Substituting \(a^2 = 9\) and \(b^2 = 7\): \[ e = \sqrt{1 + \frac{9}{7}} = \sqrt{\frac{7 + 9}{7}} = \sqrt{\frac{16}{7}} = \frac{4}{\sqrt{7}} \] ### Final Answer Thus, the eccentricity of the conic is: \[ e = \frac{4}{\sqrt{7}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos

Similar Questions

Explore conceptually related problems

Which of the following is /are true about the hyperbola 7y^(2) - 9x^(2) + 54x - 28y - 116 = 0

the eccentricity to the conic 4x^(2) +16y^(2)-24x-32y=1 is

Knowledge Check

  • The eccentricity of the conic 9x^(2) + 25y^(2) - 18 x - 100 y = 116 is

    A
    A. `(3)/(5)`
    B
    B. `(16)/(25)`
    C
    C. `(4)/(5)`
    D
    D. `(9)/(25)`
  • The eccentricity of the conics - (x^(2))/(a^(2)) +(y^(2))/(b^(2)) = 1 is

    A
    `sqrt((a^(2)+b^(2))/(b^(2)))`
    B
    `sqrt((a^(2)-b^(2))/(b^(2)))`
    C
    `sqrt((a^(2)-b^(2))/(a^(2)))`
    D
    `sqrt((a^(2)-b^(2))/(a^(2)))`
  • Similar Questions

    Explore conceptually related problems

    The eccentricity of the hyperbola x^(2)-y^(2)=9 is

    The eccentricity of the hyperbola 9x^(2)-16y^(2)+72x-32y-16=0 , is

    The eccentricity of the conic represented by 2x^2+5xy+2y^2+11x-7y-4=0 is

    The eccentricity of the conic 9x^2-16 y^2=144 is a. 5/4 b. 4/3 c. 4/5 d. sqrt(7)

    The equations of the asymptotes of the conic. x^(2) + 24xy - 6y^(2) + 28x + 36y + 16 = 0 are

    The eccentricity of the hyperbola 9x^(2) -16y^(2) =144 is