Home
Class 11
MATHS
In a DeltaABC, if a = 3, b = 5 and c = 7...

In a `DeltaABC`, if a = 3, b = 5 and c = 7, find cos c

A

`(1)/(2)`

B

`(1)/(sqrt(2))`

C

`-(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \cos C \) in triangle \( ABC \) with sides \( a = 3 \), \( b = 5 \), and \( c = 7 \), we can use the cosine rule. The cosine rule states that: \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] ### Step-by-Step Solution: 1. **Identify the values of the sides:** - \( a = 3 \) - \( b = 5 \) - \( c = 7 \) 2. **Substitute the values into the cosine rule formula:** \[ \cos C = \frac{3^2 + 5^2 - 7^2}{2 \cdot 3 \cdot 5} \] 3. **Calculate \( a^2 \), \( b^2 \), and \( c^2 \):** - \( 3^2 = 9 \) - \( 5^2 = 25 \) - \( 7^2 = 49 \) 4. **Substitute these values back into the equation:** \[ \cos C = \frac{9 + 25 - 49}{2 \cdot 3 \cdot 5} \] 5. **Simplify the numerator:** - \( 9 + 25 = 34 \) - \( 34 - 49 = -15 \) So, the numerator becomes: \[ -15 \] 6. **Calculate the denominator:** \[ 2 \cdot 3 \cdot 5 = 30 \] 7. **Now substitute the values into the equation:** \[ \cos C = \frac{-15}{30} \] 8. **Simplify the fraction:** \[ \cos C = -\frac{1}{2} \] ### Final Answer: Thus, \( \cos C = -\frac{1}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-19

    ICSE|Exercise SECTION - C |10 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC , if a=25, b = 52 and c =63 , find cos A

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : cos (A/2)

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : sin (A/2)

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : tan (A/2)

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : cot (A/2)

In DeltaABC , If in a DeltaABC , a = 6, b = 3 and cos(A-B)=4/5 , find its area.

In a DeltaABC , if a = 4, b = 5 , c = 6 then angle C is equal to

In DeltaABC, a = 3, b = 4 and c = 5 , then value of sinA + sin2B + sin3C is

In DeltaABC, a = 3, b = 4 and c = 5 , then value of sinA + sin2B + sin3C is

If in DeltaABC, a =3, b = 5, c = 7 find the greatest angle.