Home
Class 11
MATHS
If theta = -1440^(@), then tan theta is...

If `theta = -1440^(@)`, then `tan theta` is

A

1

B

0

C

`-1`

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \tan \theta \) when \( \theta = -1440^\circ \), we can follow these steps: ### Step 1: Find the equivalent positive angle To convert \( -1440^\circ \) to a positive angle, we can add \( 360^\circ \) repeatedly until we get a positive angle. \[ -1440 + 360 \times n = \text{positive angle} \] We can divide \( 1440 \) by \( 360 \) to find how many full rotations fit into it: \[ 1440 \div 360 = 4 \] So, we can add \( 360^\circ \) four times: \[ -1440 + 360 \times 4 = -1440 + 1440 = 0^\circ \] ### Step 2: Determine the value of \( \tan \theta \) Now that we have \( \theta = 0^\circ \), we can find \( \tan 0^\circ \): \[ \tan 0^\circ = 0 \] ### Step 3: Conclusion Thus, we have: \[ \tan(-1440^\circ) = \tan(0^\circ) = 0 \] ### Final Answer \[ \tan(-1440^\circ) = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-19

    ICSE|Exercise SECTION - C |10 Videos

Similar Questions

Explore conceptually related problems

If theta = - 1590^(@) , then tan theta is

Show that: If theta = (2pi)/7 , prove that tan theta tan2theta + tan2thetatan4theta + tan4thetatantheta = -7

If f(theta) = |(1,tan theta,1),(- tan theta,1,tan theta),(-1,-tan theta,1)|, " then the set " {f(theta ) : 0 le theta le (pi)/(2)} is

If theta in (pi//4, pi//2) and sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta , then the value of tan theta is

General solution of tan theta+tan 4 theta+tan 7 theta=tan theta tan 4 theta tan 7 theta is

If tan theta + tan (60^@+ theta) + tan (120^@ + theta)=3 then theta =

If theta is an acute angle and tan theta + sec theta = 1.5 , find sin theta, tan theta and sec theta .

If tan 3 theta + tan theta =2 tan 2 theta , then theta is equal to (n in Z)

If 1+ tan^(2) theta = sec^(2) theta then find (sec theta + tan theta)

Prove that: tan 8theta - tan 6theta - tan 2theta = tan 8theta \ tan 6theta \ tan 2theta .