Home
Class 11
MATHS
Evaluate : lim(x to 4 ) (sqrt(x)-2)/(x-4...

Evaluate : `lim_(x to 4 ) (sqrt(x)-2)/(x-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} \), we can follow these steps: ### Step 1: Substitute the limit value First, we substitute \( x = 4 \) into the expression: \[ \frac{\sqrt{4} - 2}{4 - 4} = \frac{2 - 2}{0} = \frac{0}{0} \] This results in an indeterminate form \( \frac{0}{0} \), so we need to manipulate the expression further. **Hint:** When you encounter \( \frac{0}{0} \), it indicates that you need to simplify the expression. ### Step 2: Rewrite the denominator We can rewrite the denominator \( x - 4 \) as \( \sqrt{x}^2 - 2^2 \). This allows us to use the difference of squares: \[ x - 4 = \sqrt{x}^2 - 2^2 = (\sqrt{x} - 2)(\sqrt{x} + 2) \] **Hint:** Use the identity \( a^2 - b^2 = (a - b)(a + b) \) to factor the denominator. ### Step 3: Substitute the factorization into the limit Now we can rewrite the limit: \[ \lim_{x \to 4} \frac{\sqrt{x} - 2}{(\sqrt{x} - 2)(\sqrt{x} + 2)} \] We can cancel \( \sqrt{x} - 2 \) from the numerator and the denominator (as long as \( x \neq 4 \)): \[ \lim_{x \to 4} \frac{1}{\sqrt{x} + 2} \] **Hint:** Cancel common factors to simplify the limit expression. ### Step 4: Evaluate the limit Now we can substitute \( x = 4 \) into the simplified expression: \[ \frac{1}{\sqrt{4} + 2} = \frac{1}{2 + 2} = \frac{1}{4} \] **Hint:** After simplification, substitute the limit value directly into the expression. ### Final Answer Thus, the limit is: \[ \lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-19

    ICSE|Exercise SECTION - C |10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

Evaluate lim_(x to a) (sqrt(x) + sqrt(a))/(x + a)

Evaluate lim_(xrarr5) (1-sqrt(x-4))/(x-5)

lim_(x->2)(sqrt(x-2))/(x^2-4)

Evaluate the following limits : Lim_(x to 4) (3-sqrt((5+x)))/(x-4)

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

Evaluate: lim_(xrarra) (sqrt(x)-sqrt(a))/(x-a)

Evaluate lim_(xtoa) (sqrt(3x-a)-sqrt(x+a))/(x-a).