Home
Class 11
MATHS
Prove that : sin^(2) 6x - sin^(2)4x = si...

Prove that : `sin^(2) 6x - sin^(2)4x = sin 2x *sin10x`

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-19

    ICSE|Exercise SECTION - C |10 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin^2 6x-sin^2 4x=sin 2x\ sin\ 10 x

Prove that: sin^2 6x-sin^2 4x=sin2xsin10 x

sin x sin 2x sin 3x

Prove that : (sinx-sin3x)/(sin^(2)x-cos^(2)x) = 2sinx

Prove that : sin 2x + 2 sin 4x + sin 6x = 4 cos^2 x sin 4x .

Prove that: cos^2 2x-cos^2 6x= sin4x sin8x

Prove that sqrt((2 sin 2x- sin 4x)/( 2 sin 2x+ sin 4x))= tan x .

Prove that: sin 3x + sin 2x - sin x = 4 sin x cos x/2 cos (3x)/2

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x