Home
Class 11
MATHS
Find the value of cos^(2)((pi)/(6) - (th...

Find the value of `cos^(2)((pi)/(6) - (theta)/(2)) - sin^(2) ((pi)/(6)+(theta)/(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos^2\left(\frac{\pi}{6} - \frac{\theta}{2}\right) - \sin^2\left(\frac{\pi}{6} + \frac{\theta}{2}\right) \), we can use the trigonometric identity: \[ \cos^2 A - \sin^2 B = \cos(A + B) \cdot \cos(A - B) \] ### Step 1: Identify \( A \) and \( B \) Let: - \( A = \frac{\pi}{6} - \frac{\theta}{2} \) - \( B = \frac{\pi}{6} + \frac{\theta}{2} \) ### Step 2: Calculate \( A + B \) and \( A - B \) Now, we can calculate \( A + B \) and \( A - B \): \[ A + B = \left(\frac{\pi}{6} - \frac{\theta}{2}\right) + \left(\frac{\pi}{6} + \frac{\theta}{2}\right) = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3} \] \[ A - B = \left(\frac{\pi}{6} - \frac{\theta}{2}\right) - \left(\frac{\pi}{6} + \frac{\theta}{2}\right) = -\theta \] ### Step 3: Substitute into the identity Now substitute \( A + B \) and \( A - B \) into the identity: \[ \cos^2\left(\frac{\pi}{6} - \frac{\theta}{2}\right) - \sin^2\left(\frac{\pi}{6} + \frac{\theta}{2}\right) = \cos\left(\frac{\pi}{3}\right) \cdot \cos(-\theta) \] ### Step 4: Evaluate \( \cos\left(\frac{\pi}{3}\right) \) and \( \cos(-\theta) \) We know that: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] And since \( \cos(-\theta) = \cos(\theta) \): \[ \cos(-\theta) = \cos(\theta) \] ### Step 5: Final expression Putting it all together, we have: \[ \cos^2\left(\frac{\pi}{6} - \frac{\theta}{2}\right) - \sin^2\left(\frac{\pi}{6} + \frac{\theta}{2}\right) = \frac{1}{2} \cdot \cos(\theta) \] ### Final Answer Thus, the final value is: \[ \frac{1}{2} \cos(\theta) \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-19

    ICSE|Exercise SECTION - C |10 Videos

Similar Questions

Explore conceptually related problems

Prove that sin ^(2) ((pi)/(8) + (theta)/(2)) - sin ^(2) ((pi)/(8) - (theta)/(2)) = sin ""(pi)/(4) sin theta.

The maximum value of cos^(2)(cos(33pi + theta))+sin^(2)(sin(45pi+theta)) is

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to

The value of cos^2(pi/6+theta)-sin ^2\ (pi/6-theta) is (a)dot 1/2cos\ 2theta (b)dot 0 (c)dot -1/2cos2theta (d). 1/2

The value of cos^2(pi/6+theta)-sin^2\ \ (pi/6-theta) is a, 1/2cos2theta b. 0 c. -1/2cos2theta d. -cot35^0

Find the value of the expression 3{sin^4((3pi)/2-theta)+sin^4(3pi+theta)}-2{sin^6(pi/2+theta)+sin^6(5pi-theta)}

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of tan^(2)""(pi)/(7)tan ^(2)""(2pi)/(7) tan ^(2)""(3pi)/(7) is

The value of 2"sin"^(2)(pi)/(6)+"cosec"^(2)(7pi)/(6)."cos"^(2)(pi)/(3) is equal to