Home
Class 11
MATHS
Given f(x)=(1)/(secx - tan x), prove tha...

Given `f(x)=(1)/(secx - tan x)`, prove that `f'(x)= sec x (sec x +tan x)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-C |9 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos

Similar Questions

Explore conceptually related problems

int sec x ln(sec x+tan x)dx=

int x sec x*tan xdx

int secx. log (sec x+ tan x ) dx

int(secx- tan x)/(sec x+ tan x) dx

If (x)=tan x , the prove that :f(x)+f(-x)=0

If f(x)= log("tan"(x)/(2)) , then prove that, f'(x)="cosec"x .,

Solve the equation 4 cos x - 3 sec x = tan x .

Solve the equation sec^2 2x = 1 - tan 2x .

Ther derivative of f(x) = sec(X) tan(x) is

Draw the graph of f(x)=sec^(-1)(sec x)