Home
Class 11
MATHS
Evaluate : "tan"(2pi)/(9)+"tan"(pi)/(9) ...

Evaluate : `"tan"(2pi)/(9)+"tan"(pi)/(9) + sqrt(3) "tan"(2pi)/(9) "tan"(pi)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \tan\left(\frac{2\pi}{9}\right) + \tan\left(\frac{\pi}{9}\right) + \sqrt{3} \tan\left(\frac{2\pi}{9}\right) \tan\left(\frac{\pi}{9}\right) \), we can use the tangent addition formula. ### Step-by-step Solution: 1. **Identify the angles**: Let \( a = \frac{2\pi}{9} \) and \( b = \frac{\pi}{9} \). 2. **Use the tangent addition formula**: The formula for the tangent of the sum of two angles is: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Applying this to our angles: \[ \tan\left(a + b\right) = \tan\left(\frac{2\pi}{9} + \frac{\pi}{9}\right) = \tan\left(\frac{3\pi}{9}\right) = \tan\left(\frac{\pi}{3}\right) \] 3. **Evaluate \( \tan\left(\frac{\pi}{3}\right) \)**: We know that: \[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] 4. **Set up the equation**: From the tangent addition formula, we have: \[ \sqrt{3} = \frac{\tan\left(\frac{2\pi}{9}\right) + \tan\left(\frac{\pi}{9}\right)}{1 - \tan\left(\frac{2\pi}{9}\right) \tan\left(\frac{\pi}{9}\right)} \] 5. **Cross-multiply**: Rearranging gives: \[ \sqrt{3} \left(1 - \tan\left(\frac{2\pi}{9}\right) \tan\left(\frac{\pi}{9}\right)\right) = \tan\left(\frac{2\pi}{9}\right) + \tan\left(\frac{\pi}{9}\right) \] 6. **Rearranging the equation**: This can be rewritten as: \[ \sqrt{3} - \sqrt{3} \tan\left(\frac{2\pi}{9}\right) \tan\left(\frac{\pi}{9}\right) = \tan\left(\frac{2\pi}{9}\right) + \tan\left(\frac{\pi}{9}\right) \] 7. **Combine terms**: Now, we can rearrange this to isolate the terms: \[ \tan\left(\frac{2\pi}{9}\right) + \tan\left(\frac{\pi}{9}\right) + \sqrt{3} \tan\left(\frac{2\pi}{9}\right) \tan\left(\frac{\pi}{9}\right) = \sqrt{3} \] 8. **Conclusion**: Thus, we find that: \[ \tan\left(\frac{2\pi}{9}\right) + \tan\left(\frac{\pi}{9}\right) + \sqrt{3} \tan\left(\frac{2\pi}{9}\right) \tan\left(\frac{\pi}{9}\right) = \sqrt{3} \] ### Final Answer: The value of the expression is \( \sqrt{3} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-C |9 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos

Similar Questions

Explore conceptually related problems

tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equal to

tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equal to

Evaluate: Log_9tan(pi/6)

Evaluate : tan ""(pi )/(12) .tan ""( pi )/(16) .tan ""(5pi )/(12) .tan ""( 7pi )/(16)

Evaluate : 8 cos ^(3) ""(pi)/(9)- 6cos ""(pi)/(9)

Prove that sin ""(pi)/(9) sin ""(2pi)/(9) sin ""( 3pi)/(9) sin ""(4pi)/(9) = (3)/(16).

The value of : tan^(-1) ( tan ""(9pi)/(8) ) is

Prove that cos ""(pi)/(9) cos ""( 2pi)/(9) cos "" (3pi)/(9) cos ""(4pi)/(9) = (1)/(2 ^(4)).

Find the incentre of a triangle formed by the lines x "cos" (pi)/(9) + y "sin" (pi)/(9) = pi, x "cos" (8pi)/(9)+ y "sin" (8pi)/(9) = pi " and x "cos" (13pi)/(9) + y "sin" ((13pi)/(9)) = pi.

The value of tan((5pi)/12)-tan(pi/12) is