Home
Class 11
MATHS
Redefine the function f(x)= |1+x| +|1-x|...

Redefine the function `f(x)= |1+x| +|1-x|, -2 le x le 2`.

Text Solution

AI Generated Solution

The correct Answer is:
To redefine the function \( f(x) = |1+x| + |1-x| \) for the interval \(-2 \leq x \leq 2\), we will analyze the function by considering the critical points where the expressions inside the absolute values change sign. The critical points for this function are \( x = -1 \) and \( x = 1 \). ### Step 1: Identify the intervals The critical points divide the interval \([-2, 2]\) into three intervals: 1. \( -2 \leq x < -1 \) 2. \( -1 \leq x < 1 \) 3. \( 1 \leq x \leq 2 \) ### Step 2: Analyze each interval **Interval 1: \( -2 \leq x < -1 \)** - In this interval, both \( 1+x \) and \( 1-x \) are negative. - Therefore, we have: \[ f(x) = |1+x| + |1-x| = -(1+x) - (1-x) = -1 - x - 1 + x = -2 \] **Interval 2: \( -1 \leq x < 1 \)** - In this interval, \( 1+x \) is non-negative and \( 1-x \) is non-negative. - Therefore, we have: \[ f(x) = |1+x| + |1-x| = (1+x) + (1-x) = 1 + x + 1 - x = 2 \] **Interval 3: \( 1 \leq x \leq 2 \)** - In this interval, \( 1+x \) is positive and \( 1-x \) is negative. - Therefore, we have: \[ f(x) = |1+x| + |1-x| = (1+x) - (1-x) = 1 + x - 1 + x = 2x \] ### Step 3: Combine the results Now we can combine the results from each interval to redefine the function \( f(x) \): \[ f(x) = \begin{cases} -2 & \text{if } -2 \leq x < -1 \\ 2 & \text{if } -1 \leq x < 1 \\ 2x & \text{if } 1 \leq x \leq 2 \end{cases} \] ### Final Answer Thus, the redefined function is: \[ f(x) = \begin{cases} -2 & \text{if } -2 \leq x < -1 \\ 2 & \text{if } -1 \leq x < 1 \\ 2x & \text{if } 1 \leq x \leq 2 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-C |9 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos

Similar Questions

Explore conceptually related problems

Draw the graph of the function f(x) = x - |x - x^(2)|, -1 le x le 1 and discuss the continuity or discontinuity of f in the interval -1 le x le 1

The range of the function f(x)=|x-1|+|x-2|, -1 le x le 3, is

Draw the graph of the function f(x)= x- |x-x^(2)|, -1 le x le 1 and find the points of non-differentiability.

Verify Lagrange 's mean value theorem for the function f(x) = x+ (1)/(x) , 1 le x le 3

Draw the graph of the function f(x) = x-|x2-x| -1 le x le 1 , where [*] denotes the greatest integer function. Find the points of discontinuity and non-differentiability.

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

Rolle's theorem is not applicable to the function f(x)=|x|"for"-2 le x le2 becase

Discuss the continuity of the function f(x)= {(x , 0 le x lt1/2 ),( 12,x=1/2),( 1-x , 1/2ltxle1):} at the point x=1//2 .

Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 ),(" "37 - x," "2 lt x le 3 ):} is continuous at x = 2

For the function f(x)=x^(2)-6x+8, 2 le x le 4 , the value of x for which f'(x) vanishes is