Home
Class 11
MATHS
Find correlation coefficient when, Sigm...

Find correlation coefficient when, `Sigma x_(i) = 40, Sigma y_(i)= 55, Sigma x_(i)^(2) = 192, Sigmay_(i)^(2)=385, Sigma(x_(i)+y_(i))^(2)=947` and n = 10.

Text Solution

AI Generated Solution

The correct Answer is:
To find the correlation coefficient \( r_{xy} \), we will use the formula: \[ r_{xy} = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n \sum x_i^2 - (\sum x_i)^2} \sqrt{n \sum y_i^2 - (\sum y_i)^2}} \] ### Step 1: Write down the given information Given: - \( \sum x_i = 40 \) - \( \sum y_i = 55 \) - \( \sum x_i^2 = 192 \) - \( \sum y_i^2 = 385 \) - \( \sum (x_i + y_i)^2 = 947 \) - \( n = 10 \) ### Step 2: Find \( \sum x_i y_i \) We know that: \[ \sum (x_i + y_i)^2 = \sum x_i^2 + \sum y_i^2 + 2 \sum x_i y_i \] Substituting the known values: \[ 947 = 192 + 385 + 2 \sum x_i y_i \] Calculating \( 192 + 385 \): \[ 192 + 385 = 577 \] So we have: \[ 947 = 577 + 2 \sum x_i y_i \] Rearranging gives: \[ 2 \sum x_i y_i = 947 - 577 = 370 \] Thus, \[ \sum x_i y_i = \frac{370}{2} = 185 \] ### Step 3: Substitute values into the correlation coefficient formula Now we can substitute the values into the correlation coefficient formula: \[ r_{xy} = \frac{10 \cdot 185 - 40 \cdot 55}{\sqrt{10 \cdot 192 - 40^2} \sqrt{10 \cdot 385 - 55^2}} \] ### Step 4: Calculate the numerator Calculating the numerator: \[ 10 \cdot 185 = 1850 \] Calculating \( 40 \cdot 55 \): \[ 40 \cdot 55 = 2200 \] Thus, the numerator is: \[ 1850 - 2200 = -350 \] ### Step 5: Calculate the denominator Calculating the first part of the denominator: \[ 10 \cdot 192 = 1920 \] \[ 40^2 = 1600 \] So, \[ 10 \cdot 192 - 40^2 = 1920 - 1600 = 320 \] Calculating the second part of the denominator: \[ 10 \cdot 385 = 3850 \] \[ 55^2 = 3025 \] So, \[ 10 \cdot 385 - 55^2 = 3850 - 3025 = 825 \] Now, the denominator becomes: \[ \sqrt{320} \cdot \sqrt{825} \] ### Step 6: Final calculations Calculating \( \sqrt{320} \) and \( \sqrt{825} \): \[ \sqrt{320} = 8\sqrt{5} \quad \text{and} \quad \sqrt{825} = 5\sqrt{33} \] Thus, the denominator is: \[ 8\sqrt{5} \cdot 5\sqrt{33} = 40\sqrt{165} \] ### Step 7: Putting it all together Now we can write: \[ r_{xy} = \frac{-350}{40\sqrt{165}} \] Simplifying gives: \[ r_{xy} = \frac{-35}{4\sqrt{165}} \] ### Step 8: Approximate the value Calculating the approximate value: Using a calculator, we can find that \( \sqrt{165} \approx 12.845 \): \[ r_{xy} \approx \frac{-35}{4 \cdot 12.845} \approx \frac{-35}{51.38} \approx -0.68 \] ### Final Result Thus, the correlation coefficient \( r_{xy} \) is approximately: \[ \boxed{-0.68} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -16

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos

Similar Questions

Explore conceptually related problems

If Sigma(x_(i)-2)=10,Sigma(y_(i)-5)=20,Sigmax_(i)y_(i)=148andn=5 , find cov (x,y)

Given, n = 5, Sigma x_(i) = 25, Sigma y_(i) = 20, Sigma x_(i) y_(i) = 90 and Sigma x_(i)^(2) = 135 , find the regression coefficient of y on x.

From the following data find regression equation of y on x, Sigma x= 55, Sigma y= 88, Sigma x^(2)= 385, Sigma y^(2) = 1114, Sigma xy= 586,n= 10

If Sigma_(i=1)^(10) x_i=60 and Sigma_(i=1)^(10)x_i^2=360 then Sigma_(i=1)^(10)x_i^3 is

Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j

Find the covariance between X and Y when n = 10 , SigmaX = 60 , Sigma Y = 60 and Sigma XY = 305 .

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

A computer while calculating the correlation coefficient between the variables x and y obtained the following results : n=25,sumx_(i)=125,sumy_(i)=100,sumx_(i)^(2)=650,sumy_(i)^(2)=460,sumx_(i)y_(i)=508 It was however later discovered at the time of checking that it has copied down two pairs of obervations as (6,14) and (8,6) where as values were (8,12) and (6,8) .Calculate the correct correlation coefficient of x and y.

Given Sigma_(i=1)^(20) a_i=100, Sigma_(i-1)^(20) a_i^2=600, Sigma_(i-1)^(20) b_i=140, Sigma_(i-1)^(20)b_i^2=1000 , where a_i,b_i denotes length and weight of an observations. Then which is more varying ?