Home
Class 12
MATHS
If |vec(a)| = 2, |vec(b)| = 7 and vec(a)...

If `|vec(a)| = 2, |vec(b)| = 7` and `vec(a) xx vec(b) = 3hat(i) + 2hat(j) + 6hat(k)`, find the angle between `vec(a)` and `vec(b)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{a}\) and \(\vec{b}\), we can use the relationship between the magnitudes of the cross product and the sine of the angle between the two vectors. ### Step-by-Step Solution: 1. **Given Information**: - Magnitude of \(\vec{a}\): \(|\vec{a}| = 2\) - Magnitude of \(\vec{b}\): \(|\vec{b}| = 7\) - Cross product: \(\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}\) 2. **Calculate the Magnitude of the Cross Product**: \[ |\vec{a} \times \vec{b}| = \sqrt{(3)^2 + (2)^2 + (6)^2} \] \[ = \sqrt{9 + 4 + 36} = \sqrt{49} = 7 \] 3. **Use the Formula for the Magnitude of the Cross Product**: The formula for the magnitude of the cross product is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Substituting the known values: \[ 7 = (2)(7) \sin \theta \] 4. **Simplify the Equation**: \[ 7 = 14 \sin \theta \] Dividing both sides by 14: \[ \sin \theta = \frac{7}{14} = \frac{1}{2} \] 5. **Find the Angle \(\theta\)**: The angle \(\theta\) whose sine is \(\frac{1}{2}\) is: \[ \theta = 30^\circ \] ### Final Answer: The angle between \(\vec{a}\) and \(\vec{b}\) is \(30^\circ\). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j) +6 hat(k) , then the angle between vec(a) and vec(b) is

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If |a|=2,|b|=7 and vec a x vec b=3 hat i+2 hat j+6 hat k , find the angle between vec a and vec b .

If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 hat k ,\ find the angle between vec a\ a n d\ vec bdot

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

vec(A)=(hat(i)-2hat(j)+6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) , find the cross product between vec(A) and vec(B) .

If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

If vec(A) = 2hat(i) + 7 hat(j) -2hat(k) and vec(B) = 2 hat(i) - 3 hat(j) + 3hat(k) find (i) the magnitude of each other (ii) vec(A) + vec(B) , (iii) vec(A) - vec(B)

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .