Home
Class 12
MATHS
vec a , vec b , vec c are three vectors...

` vec a , vec b , vec c ` are three vectors such that ` |vec a | = 5 | vec b | =8 |vec c | = 3 if vec a + vec b + vec c = 8 hati+ 6hatj , `find the value of ` vec a .vec b +vec b .vec c + vec c .vec a `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given information and apply vector algebra. ### Step 1: Understand the given information We have three vectors: - \( |\vec{a}| = 5 \) - \( |\vec{b}| = 8 \) - \( |\vec{c}| = 3 \) And we know that: \[ \vec{a} + \vec{b} + \vec{c} = 8\hat{i} + 6\hat{j} \] ### Step 2: Square both sides of the equation To find \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \), we will square both sides of the equation: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = |8\hat{i} + 6\hat{j}|^2 \] ### Step 3: Calculate the left-hand side Using the property of magnitudes: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] Substituting the magnitudes: \[ |\vec{a}|^2 = 5^2 = 25, \quad |\vec{b}|^2 = 8^2 = 64, \quad |\vec{c}|^2 = 3^2 = 9 \] Thus, \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 25 + 64 + 9 = 98 \] ### Step 4: Calculate the right-hand side Now, calculate the magnitude of the right-hand side: \[ |8\hat{i} + 6\hat{j}|^2 = 8^2 + 6^2 = 64 + 36 = 100 \] ### Step 5: Set the equations equal Now we equate both sides: \[ 98 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 100 \] ### Step 6: Solve for the dot products Rearranging gives: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 100 - 98 \] \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 2 \] Dividing by 2: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 1 \] ### Final Answer Thus, the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c=0. then find the value of vec a. vec b+ vec b.vec c+ vec c. vec a

If vec a , vec b , vec c are unit vectors such that vec a. vec b=0= vec a. vec c and the angle between vec b and vec c is pi/3, then find the value of | vec axx vec b- vec axx vec c| .

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot