Home
Class 13
MATHS
cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n...

`cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that - cot^-1x+cot^-1(x^2-x+1)=cot^-1(x-1)

cot(tan^(-1)x+cot^(-1)x)

The solution set of the inequality (tan^(-1)x cot^(-1)x)^(2)+5-5(tan^(-1)x)^(2)cot^(-1)x+(cot^(-1)x)^(2)-5cot^(-1)x+6(tan^(-1)x)^(2)+1lt0 is (m,n) ,the value of cot^(-1)m-cot^(-1)n is equal to (1) -1 (3) Zero

Find the sum of the series cot^(-1) 7+cot^(-1)13+cot^(-1)21+cot^(-1)31+... to n terms

int(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x)dx equals

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x) then (dy)/(dx)=

If cot^(-1) ( alpha) = cot^(-1)(2) + cot^(-1)(8) + cot^(-1)(18) + cot ^(-1)(32) + "…………" upto 100 terms , then alpha is :

If S_(n)=cot^(-1)(3)+cot^(-1)(7)+cot^(-1)(13)+cot^(-1)(21)+.,n terms,then

The value of the expression cot^(-1) (1/2) + cot^(-1) (9/2) + cot^(-1) (25/2) + cot^(-1) (49/2) upto + .......n terms is