Home
Class 12
MATHS
(dy)/(dx)=(1+x^(2))/(y+cos y)...

`(dy)/(dx)=(1+x^(2))/(y+cos y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=cos(x+y)

(dy)/(dx)=cos(x-y)

If sin(x+y)=y cos(x+y) ,then prove that (dy)/(dx)=-(1+y^(2))/(y^(2))

If sin y=x sin(y+a) and (dy)/(dx)=(A)/(1+x^(2)-2x cos a) then the value of A is

Solution of differential equation sin y*(dy)/(dx)=(1)/(x)cos y=x^(4)cos^(2)y is

The solution of the equation (dy)/(dx)=(x(2log x+1))/(sin y+y cos y) is

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)