Home
Class 11
MATHS
Let a1,a2,dotdotdot,anbe fixed real num...

Let `a_1,a_2,dotdotdot,a_n`be fixed real numbers and define a function `(x-a_2)dotdotdot(x-a_n)`. What is `(lim)_(x->x_1)(x)`? For some `a!=a_1,a_2,dotdotdot,a_n`, compute `(lim)_(x->a)f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1,""""a_2,""""dot""""dot""""dot"",""a_n be fixed real numbers and define a function (x-a_2)""dot""""dot""""dot""(x-a_n) . What is (lim)_(x->x_1)(x) ? For some a!=a_1,""""a_2,""""dot""""dot""""dot,""""a_n , compute (lim)_(x->a)f(x)

Let a_1,a_2,.....,a_n be fixed real numbers and define a function f(x) = (x-a_1) (x-a_2).....(x-a_n) . What is (lim)_(x->a_1)f(x) ? For some a!=a_1,a_2,.....,a_n , compute (lim)_(x->a)f(x)

Let a_1 , a_2 ... . . a_n be fixed real numbers and define a function f(x)= (x -a_1 )(x-a_2 )...(x -a_n). What is lim_(x rarr a_1)f(x) ? For some a ne a_1,a_2,....a_n , compute lim_(x rarr a)f(x) .

Let a_1,a_2…….a_n be fixed real number such that f(x)=(x-a_1)(x-a_2)……….(x-a_n) what lim_(x to a) f(x) For a ne a_1,a_2……a_n compute lim_(x to 0) f(x)

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

If a_1,a_2,a_3…a_n are in H.P and f(k)=(Sigma_(r=1)^(n) a_r)-a_k then a_1/f(1),a_2/f(3),….,a_n/f(n) are in

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1,a_2,.....a_n are positive real number whose product is a fixed number c, then the minimum value of a_1+a_2+......+a_(n-1)+a_n is