Home
Class 11
MATHS
If the angles alpha, beta, gamma of a tr...

If the angles `alpha, beta, gamma` of a triangle satisfy the relation,
`sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2)`, then
Triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then The measure of the smallest angle of the triangle is

The angles alpha , beta , gamma of a triangle satisfy the equations 2 sin alpha + 3 cos beta = 3sqrt(2) and 3sin beta + 2cos alpha = 1 . Then angle gamma equals

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))*sin((beta+gamma)/(2))*sin((gamma+alpha)/(2))

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))sin((beta+gamma)/(2))sin((gamma+alpha)/(2))

If a line makes angles alpha , beta ,gamma with coordinate axes , then sin ^2 alpha +sin^2 beta + sin^2 gamma ………

If alpha,beta,gamma,in(0,(pi)/(2)), then prove that (si(alpha+beta+gamma))/(sin alpha+sin beta+sin gamma)<1

det [[1,1,1sin alpha, no beta, no deltacos alpha, cos beta, cos delta]] = - 4sin ((alpha-beta) / (2)) sin ((beta-delta) / (2)) sin ((delta-alpha) / (2))

If a line makes angle alpha, beta and gamma with the axes respectively then sin^(2)alpha+sin^(2)beta+sin^(2)gamma=

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =