Home
Class 12
MATHS
Let x0=2(cos)pi/6and xn=sqrt(2+x(n-1)).n...

Let `x_0=2(cos)pi/6and x_n=sqrt(2+x_(n_-1)).n=1,2,3,.......` find `Lim_(n->oo)2^(n+1).sqrt(2-x_n)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x_(0)=2(cos)(pi)/(6) and x_(n)=sqrt(2+x_(n-1))*n=1,2,3 find lim_(n rarr oo)2^(n+1)*sqrt(2-x_(n))

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n)),n<=1, then lim_(n rarr oo)x_(n) is

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

If x_1=3 and x_ +1= sqrt(2+x_n), n ge 1 , then lim_(nto oo) x_n is equal to

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n)),n>=1, then backslash(lim backslash)_(x rarr oo)x_(n) is (a) -1 (b) 2(c)sqrt(5)(d)3

If quad sqrt(3) and x_(n+1)=(x_(n))/(1+sqrt(1+x_(n)^(2))),AA n in N then lim_(n rarr oo)2^(n)x_(n) is equal to ,AA n in N

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let x_(1)=1 and x_(n+1)=(4+3x_(n))/(3+2x_(n)) for n>=1 If lim_(x rarr oo)x_(n) exists finitely,then the limit is equal to

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=