Home
Class 12
MATHS
Prove that int(0)^((pi)/(4))log(1+tanx)d...

Prove that `int_(0)^((pi)/(4))log(1+tanx)dx=(pi)/(8)log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))log(tan x)*dx

int_(0)^((pi)/(2))log(cos x)dx=

Evaluate int_(0)^((pi)/(4))log(1+tan x)dx

int_(0)^((pi)/(2))log(sin2x)dx

int_(0)^((pi)/(2))log(sin x)dx

Evaluate :int_(0)^((pi)/(4))log(1+tan x)dx

Show that int_(0)^((pi)/(2))log(sin2x)dx=-(pi)/(2)(log2)

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^(pi//4) log (1+tan x) dx =?

Prove that int_(0)^((pi)/(4))2tan^(3)xdx=1-log2