Home
Class 12
MATHS
"If "xsqrt(1+y)+ysqrt(1+x)=0," prove tha...

`"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

If ye^(y)=x, prove that,(dy)/(dx)=(y)/(x(1+y))

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x

If quad sqrt(1+y)+y sqrt(1+x)0,-1

xsqrt(1+y)+ysqrt(1+x)=0 , then (dy)/(dx)=