Home
Class 12
MATHS
For the curve 32x^(3)y^(2)=(x+y)^(5) , ...

For the curve `32x^(3)y^(2)=(x+y)^(5)` , the value of `(d^(2)y)/(dx^(2))` at `P(1,1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

IF y=(1)/(1+x+x^(2)+x^(3)), then value of (d^(2)y)/(dx^(2)) at x=0 is

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

If e^(x + y) = y^2 then (d^2y)/(dx^2) at ( -1, 1 ) is equal to :

If x^(2) y^(5) = (x + y)^(7) , " then " (d^(2)y)/(dx^(2)) is equal to

x^(3)-2x^(2)y^(2)+5x+y-5=0, then find (d^(2)y)/(dx^(2)) at x=1,y=1

If y=Ae^(5x) , then (d^(2)y)/(dx^(2)) is equal to

If y =5 cos x -3 sin x," then " (d^(2)y)/(dx^(2)) is equal to :

x^(3)+3x^(2)y+xy^(2)-5y^(3)=0 then ((d^(2)y)/(dx^(2)))_(1,1) is

If y=(1)/(2x^(2)+3x+1) then (d^(2)y)/(dx^(2)) at x=-2