Home
Class 12
MATHS
int0^(pi/2)sin2x.log(tanx)dx=...

`int_0^(pi/2)sin2x.log(tanx)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (a) int_(0)^(pi//2)sin2xlog(tanx)dx=0 (b)int_(0)^(1)log((1)/(x)-1)dx=0

Evaluate the following : int_(0)^(pi//2)sin 2x.log (tanx)dx.

The value of int_0^(pi/2)sin2x.log tanxdx is

Prove that int_0^(pi//2) sin 2x log tanx dx=0

int_(0)^((pi)/(2))sin2x*log(tan x)dx=

int_0^(pi/2) sin x dx

int_0^(pi//2)log(tanx)dx

int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)

int_0^(2pi)(sin2x)dx

int_0^(2pi)(sin2x)dx