Home
Class 12
MATHS
If e^x+e^y = e^(x+y), show that (dy)/(dx...

If `e^x+e^y = e^(x+y)`, show that `(dy)/(dx) = -e^(y-x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

If e^x+e^y=e^(x+y) , show that (dy/dx)=e^(x-y)((e^y-1)/(1-e^x))

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

If e^x+e^y=e^(x+y) then prove that dy/dx =- e^(y-x)

If y=e^(x-y) then show that (dy)/(dx) = y/(1+y)

If y = e^(ax) Show that x(dy)/(dx) = y log y .

If x^(y)=e^(x-y), show that (dy)/(dx)=(y(x-y))/(x^(2))