Home
Class 14
MATHS
Solve the following : [(x + 1/y)^a (x ...

Solve the following :
`[(x + 1/y)^a (x - 1/y)^b] div [(y + 1/x)^a (y - 1/x)^b]` is equal to

A

`(x/y)^(a + b)`

B

`(y/x)^(a + b)`

C

`x^a/y^b`

D

`(xy)^(a + b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{(x + \frac{1}{y})^a (x - \frac{1}{y})^b}{(y + \frac{1}{x})^a (y - \frac{1}{x})^b} \] we will simplify it step by step. ### Step 1: Rewrite the expression We start with the given expression: \[ \frac{(x + \frac{1}{y})^a (x - \frac{1}{y})^b}{(y + \frac{1}{x})^a (y - \frac{1}{x})^b} \] ### Step 2: Factor the terms Notice that we can factor the numerator and the denominator separately. For the numerator: - \( (x + \frac{1}{y})^a \) can be rewritten as \( \left(\frac{xy + 1}{y}\right)^a \) - \( (x - \frac{1}{y})^b \) can be rewritten as \( \left(\frac{xy - 1}{y}\right)^b \) Thus, the numerator becomes: \[ \frac{(xy + 1)^a}{y^a} \cdot \frac{(xy - 1)^b}{y^b} = \frac{(xy + 1)^a (xy - 1)^b}{y^{a+b}} \] For the denominator: - \( (y + \frac{1}{x})^a \) can be rewritten as \( \left(\frac{yx + 1}{x}\right)^a \) - \( (y - \frac{1}{x})^b \) can be rewritten as \( \left(\frac{yx - 1}{x}\right)^b \) Thus, the denominator becomes: \[ \frac{(yx + 1)^a}{x^a} \cdot \frac{(yx - 1)^b}{x^b} = \frac{(yx + 1)^a (yx - 1)^b}{x^{a+b}} \] ### Step 3: Combine the fractions Now, we can rewrite the entire expression as: \[ \frac{(xy + 1)^a (xy - 1)^b}{y^{a+b}} \div \frac{(yx + 1)^a (yx - 1)^b}{x^{a+b}} \] This can be expressed as: \[ \frac{(xy + 1)^a (xy - 1)^b}{(yx + 1)^a (yx - 1)^b} \cdot \frac{x^{a+b}}{y^{a+b}} \] ### Step 4: Simplify the expression Notice that \( xy = yx \), thus the terms \( (xy + 1)^a \) and \( (yx + 1)^a \) will cancel out, as will \( (xy - 1)^b \) and \( (yx - 1)^b \). Therefore, we are left with: \[ \frac{x^{a+b}}{y^{a+b}} = \left(\frac{x}{y}\right)^{a+b} \] ### Final Result Thus, the simplified expression is: \[ \left(\frac{x}{y}\right)^{a+b} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the followings : [(x + 1/y)^a (x - 1/y)^b] div [(y + 1/x)^a (y - 1/x)^b] is equal to :

((2x + y)/(x + y) - 1) div (1 - y/(x + y)) is equal to :

Solve the followings : If x^a = y^b = z^c and y^2 = zx then the value of 1/a + 1/c is :

Solve for x and y : 2^(y-x) (x + y) = 1 and (x + y)^(x - y) = 2 .

Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

" 1."Tan^(-1)((x)/(y))-Tan^(-1)((x-y)/(x+y))" is equal to "

The expression ((x+(1)/(y))^(a)*(x-(1)/(y))^(b))/((y+(1)/(x))^(a)*(y-(1)/(x))^(b)) reduces to a.((x)/(y))^(a-b) b.((y)/(x))^(a-b)backslash c((x)/(y))^(a+b)d.((y)/(x))^(a+b)