Home
Class 14
MATHS
Solve the following : (x^b/x^c)^a xx (...

Solve the following :
`(x^b/x^c)^a xx (x^c/x^a)^b xx (x^a/x^b)^c` is equal to :

A

0

B

1

C

abc

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{x^b}{x^c})^a \cdot (\frac{x^c}{x^a})^b \cdot (\frac{x^a}{x^b})^c\), we will follow these steps: ### Step 1: Simplify Each Fraction We start by simplifying each fraction in the expression. 1. \(\frac{x^b}{x^c} = x^{b-c}\) 2. \(\frac{x^c}{x^a} = x^{c-a}\) 3. \(\frac{x^a}{x^b} = x^{a-b}\) ### Step 2: Apply the Exponents Now we will apply the exponents to each simplified fraction: 1. \((\frac{x^b}{x^c})^a = (x^{b-c})^a = x^{a(b-c)}\) 2. \((\frac{x^c}{x^a})^b = (x^{c-a})^b = x^{b(c-a)}\) 3. \((\frac{x^a}{x^b})^c = (x^{a-b})^c = x^{c(a-b)}\) ### Step 3: Combine the Exponents Next, we will combine all the terms: \[ x^{a(b-c)} \cdot x^{b(c-a)} \cdot x^{c(a-b)} \] Using the property of exponents that states \(x^m \cdot x^n = x^{m+n}\), we can combine the exponents: \[ x^{a(b-c) + b(c-a) + c(a-b)} \] ### Step 4: Expand the Exponents Now we will expand the expression in the exponent: 1. \(a(b-c) = ab - ac\) 2. \(b(c-a) = bc - ab\) 3. \(c(a-b) = ac - bc\) Now we add these together: \[ ab - ac + bc - ab + ac - bc \] ### Step 5: Simplify the Expression Notice that the terms \(ab\), \(-ab\), \(-ac\), and \(ac\) cancel out, as do \(bc\) and \(-bc\): \[ ab - ab - ac + ac + bc - bc = 0 \] ### Step 6: Final Result Thus, we have: \[ x^0 \] And we know that any non-zero number raised to the power of 0 is equal to 1: \[ x^0 = 1 \] Therefore, the final answer is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^a xx x^b xx x^c = 1 , then a^3 + b^3 + c^3 is equal to :

The value of (x^(a-b))^(c ) xx (x^(b-c))^(a) xx (x^(c-a))^(b) is

Simplify: ((x^(b))/(x^(c)))^(a)xx((x^(c))/(x^(a)))^(b)xx((x^(a))/(x^(b)))^(c)

The value of ((x^(a))/(x^(b)))^(a+b) xx ((x^(b))/(x^(c)))^(b+c) xx ((x^(c))/(x^(a)))^(c + a) is equal to