Home
Class 14
MATHS
The value of (sqrt5 + 2)/(sqrt5 - 2) is ...

The value of `(sqrt5 + 2)/(sqrt5 - 2)` is :

A

`4 - 9sqrt5`

B

`9 + 4sqrt5`

C

`9 - 4sqrt5`

D

`7 + 4sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{\sqrt{5} + 2}{\sqrt{5} - 2}\), we can rationalize the expression by multiplying the numerator and the denominator by the conjugate of the denominator. Here are the steps to solve the problem: ### Step 1: Write the expression We start with the expression: \[ \frac{\sqrt{5} + 2}{\sqrt{5} - 2} \] ### Step 2: Multiply by the conjugate To rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator, which is \(\sqrt{5} + 2\): \[ \frac{(\sqrt{5} + 2)(\sqrt{5} + 2)}{(\sqrt{5} - 2)(\sqrt{5} + 2)} \] ### Step 3: Expand the numerator Using the identity \((a + b)^2 = a^2 + 2ab + b^2\), we expand the numerator: \[ (\sqrt{5} + 2)^2 = (\sqrt{5})^2 + 2 \cdot \sqrt{5} \cdot 2 + 2^2 = 5 + 4\sqrt{5} + 4 = 9 + 4\sqrt{5} \] ### Step 4: Expand the denominator Using the identity \(a^2 - b^2 = (a - b)(a + b)\), we expand the denominator: \[ (\sqrt{5})^2 - 2^2 = 5 - 4 = 1 \] ### Step 5: Combine the results Now we can substitute back into our expression: \[ \frac{9 + 4\sqrt{5}}{1} = 9 + 4\sqrt{5} \] ### Final Answer Thus, the value of \(\frac{\sqrt{5} + 2}{\sqrt{5} - 2}\) is: \[ \boxed{9 + 4\sqrt{5}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sqrt(5) - 2)/(sqrt(5) + 2) is :

The value of (sqrt(5)-2)(sqrt(5)-2) is:

The value of (7sqrt2 +5) (7 sqrt2-5) is

The value of (3+sqrt(5))^2 (3-sqrt(5))^2 is:

Find the value of (1/(sqrt(5) - 2) + 1/(sqrt(5) + 2))^(2) .

The value of (sqrt(5)+sqrt(2))^2 is: