Home
Class 14
MATHS
If 3^n = 27 then 3^(n-1) is :...

If `3^n` = 27 then `3^(n-1)` is :

A

9

B

6

C

0

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 3^{n-1} \) given that \( 3^n = 27 \). ### Step-by-step Solution: 1. **Identify the value of \( 27 \) in terms of base \( 3 \)**: \[ 27 = 3^3 \] This means we can rewrite the equation \( 3^n = 27 \) as: \[ 3^n = 3^3 \] 2. **Since the bases are the same, we can equate the exponents**: \[ n = 3 \] 3. **Now, we need to find \( 3^{n-1} \)**: \[ n - 1 = 3 - 1 = 2 \] So we have: \[ 3^{n-1} = 3^2 \] 4. **Calculate \( 3^2 \)**: \[ 3^2 = 9 \] Thus, the value of \( 3^{n-1} \) is \( 9 \). ### Final Answer: \[ 3^{n-1} = 9 \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

sqrt(3^(2n))=27 then n=

If sqrt(2^(n))=1024, then 3^(2((n)/(4)-4))=3(b)9 (c) 27(d)81

Knowledge Check

  • If 3^n = 27 then 3^(n - 2) is:

    A
    3
    B
    `1/3`
    C
    `1/9`
    D
    `9`
  • If 3^(2n - 1) = 1/(27^(n - 3)) , then the value of n is

    A
    5
    B
    3
    C
    6
    D
    2
  • If 3^(2n - 1) = 1/(27^(n - 3)) , then the value of n is

    A
    5
    B
    3
    C
    6
    D
    2
  • Similar Questions

    Explore conceptually related problems

    If root(3)(3^(n)) = 27 , then the value of n is :

    If 3^(2n - 1) = - (1)/(27^(n-3)) , then the value of n is

    If 3^(2n-1)= (1)/(27^(n-3)) , then the value of n is

    Solve the followings : If (9^n xx 3^2 xx (3^(-n//2)) - (27)^(n))/(3^(3m) xx 2^(3)) = 1/27 then the value of (m - n) is :

    If (9^(n)xx3^(5)xx(27)^(3))/(3xx(81)^(4))=27 , then n is equal to