Home
Class 14
MATHS
If 3^n = 27 then 3^(n-1) is :...

If `3^n` = 27 then `3^(n-1)` is :

A

9

B

6

C

0

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 3^{n-1} \) given that \( 3^n = 27 \). ### Step-by-step Solution: 1. **Identify the value of \( 27 \) in terms of base \( 3 \)**: \[ 27 = 3^3 \] This means we can rewrite the equation \( 3^n = 27 \) as: \[ 3^n = 3^3 \] 2. **Since the bases are the same, we can equate the exponents**: \[ n = 3 \] 3. **Now, we need to find \( 3^{n-1} \)**: \[ n - 1 = 3 - 1 = 2 \] So we have: \[ 3^{n-1} = 3^2 \] 4. **Calculate \( 3^2 \)**: \[ 3^2 = 9 \] Thus, the value of \( 3^{n-1} \) is \( 9 \). ### Final Answer: \[ 3^{n-1} = 9 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3^n = 27 then 3^(n - 2) is:

sqrt(3^(2n))=27 then n=

If 3^(2n - 1) = 1/(27^(n - 3)) , then the value of n is

If sqrt(2^(n))=1024, then 3^(2((n)/(4)-4))=3(b)9 (c) 27(d)81

If 3^(2n-1)= (1)/(27^(n-3)) , then the value of n is