Home
Class 14
MATHS
If a+1/a=4. then the value of a^2+1/a^2 ...

If `a+1/a=4`. then the value of `a^2+1/a^2` is :

A

6

B

7

C

9

D

can't be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a + \frac{1}{a} = 4 \) and we need to find the value of \( a^2 + \frac{1}{a^2} \), we can follow these steps: ### Step 1: Square both sides of the equation We start with the equation: \[ a + \frac{1}{a} = 4 \] Now, we square both sides: \[ \left( a + \frac{1}{a} \right)^2 = 4^2 \] ### Step 2: Apply the square of a binomial formula Using the identity \( (x + y)^2 = x^2 + y^2 + 2xy \), we can expand the left side: \[ a^2 + 2 \cdot a \cdot \frac{1}{a} + \frac{1}{a^2} = 16 \] Since \( a \cdot \frac{1}{a} = 1 \), we simplify this to: \[ a^2 + 2 + \frac{1}{a^2} = 16 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( a^2 + \frac{1}{a^2} \): \[ a^2 + \frac{1}{a^2} + 2 = 16 \] Subtract 2 from both sides: \[ a^2 + \frac{1}{a^2} = 16 - 2 \] ### Step 4: Simplify the result Now we simplify the right side: \[ a^2 + \frac{1}{a^2} = 14 \] ### Final Answer Thus, the value of \( a^2 + \frac{1}{a^2} \) is: \[ \boxed{14} \]
Promotional Banner

Topper's Solved these Questions

  • MENSURATION

    QUANTUM CAT|Exercise QUESTION BANK|449 Videos
  • PERCENTAGES

    QUANTUM CAT|Exercise QUESTION BANK|271 Videos

Similar Questions

Explore conceptually related problems

If 2a+1/a=4 , then the value of a^2+1/(4a^2) is : यदि 2a+1/a=4 , a^2+1/(4a^2) का मान ज्ञात करें :

If a - 1/a = 4 , find the value of a^2 + 1/a^2

If (x-1/x)=4 then the value of (x^2+1/x^2) is

If 2a + (1)/(a) = 4 , then the value of a^(2) + (1)/(4a^(2)) is :

If 4a+1/(5a)=4 , then the value of 25a^2 +1/(16a^2) is: यदि 4a+1/(5a)=4 , 25a^2 +1/(16a^2) का मान ज्ञात करें :

The value of 1/(4^(-2)) is

If a + 1/(a -2) = 4 , then the value of (a-2)^2 + (1/(a-2)^2) is

Find the value of 1/4 div 1/2 is :

If (x-(1)/(x))=4 , then the value of (x^(2)+(1)/(x^(2))) is :

QUANTUM CAT-NUMBER SYSTEM-QUESTION BANK
  1. (888 xx 888 xx 888 - 222 xx 222 xx 222)/(888 xx 888 + 888 xx 222 + 222...

    Text Solution

    |

  2. If (64)^2 - (36)^2 = 20 k then the value of k is :

    Text Solution

    |

  3. If a+1/a=4. then the value of a^2+1/a^2 is :

    Text Solution

    |

  4. If a + 1/a = 3, then the value of a^3 + 1/(a^3) is :

    Text Solution

    |

  5. What is the value of (2.75xx2.75xx2.75-2.25xx2.25xx2.25)/(2.75xx2.75...

    Text Solution

    |

  6. If (sqrta+sqrtb)=17 and (sqrta-sqrtb)=1, then the value of sqrtab is :

    Text Solution

    |

  7. Find the value of a^3+b^3+c^3-3abc if a+b+c=12 and ab +bc +ca=47.

    Text Solution

    |

  8. If a + b + c = 0 , then the value of a^3 + b^3 + c^3 is :

    Text Solution

    |

  9. If x+y+z=0, then the value of (x^2y^2+y^2z^2+z^2x^2)/(x^4+y^4+z^4) is...

    Text Solution

    |

  10. The value of a^3+b^3+c^3-3abc, when a =87, b = -126 and c=39 is :

    Text Solution

    |

  11. The greatest divisor of (a-b)(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)(a^16+b^...

    Text Solution

    |

  12. In the above example which of the following can not divide given expre...

    Text Solution

    |

  13. The expression 31^n+17^n is divisible by for every odd positive intege...

    Text Solution

    |

  14. Which is not the factor of 4^(6n)-6^(4n) for any positive integer n?

    Text Solution

    |

  15. 19^(n) - 1 is

    Text Solution

    |

  16. Find the remainder when 38 + 71 + 85 is divided by 16.

    Text Solution

    |

  17. Find the remainder when 1661 + 1551 + 1441 + 1331 + 1221 is divided ...

    Text Solution

    |

  18. What is the remainder when 678 + 687 + 6879 + 6890 is divided by 17 ...

    Text Solution

    |

  19. What is the remainder when (10 + 10^2 + 10^3 + 10^4 + 10^5) is divided...

    Text Solution

    |

  20. Find the remainder when 123 xx 1234 is divided by 15.

    Text Solution

    |