Home
Class 14
MATHS
The unit digit of 2^(3^4) xx 3^(4^5) xx ...

The unit digit of `2^(3^4) xx 3^(4^5) xx 4^(5^6) xx 5^(6^7) xx 6^(7^8) xx 7^(8^9)` is :

A

0

B

5

C

can't be determined

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit digit of the expression \(2^{(3^4)} \times 3^{(4^5)} \times 4^{(5^6)} \times 5^{(6^7)} \times 6^{(7^8)} \times 7^{(8^9)}\), we will analyze the unit digits of each component separately. ### Step 1: Find the unit digit of \(2^{(3^4)}\) 1. Calculate \(3^4\): \[ 3^4 = 81 \] 2. The unit digits of powers of 2 cycle every 4: \(2, 4, 8, 6\). - \(2^1 \equiv 2\) - \(2^2 \equiv 4\) - \(2^3 \equiv 8\) - \(2^4 \equiv 6\) - Then it repeats. 3. To find \(2^{81}\), we find \(81 \mod 4\): \[ 81 \mod 4 = 1 \] Thus, the unit digit of \(2^{81}\) is the same as \(2^1\), which is **2**. ### Step 2: Find the unit digit of \(3^{(4^5)}\) 1. Calculate \(4^5\): \[ 4^5 = 1024 \] 2. The unit digits of powers of 3 cycle every 4: \(3, 9, 7, 1\). 3. To find \(3^{1024}\), we find \(1024 \mod 4\): \[ 1024 \mod 4 = 0 \] Thus, the unit digit of \(3^{1024}\) is the same as \(3^4\), which is **1**. ### Step 3: Find the unit digit of \(4^{(5^6)}\) 1. Calculate \(5^6\): \[ 5^6 = 15625 \] 2. The unit digits of powers of 4 cycle every 2: \(4, 6\). 3. To find \(4^{15625}\), we find \(15625 \mod 2\): \[ 15625 \mod 2 = 1 \] Thus, the unit digit of \(4^{15625}\) is the same as \(4^1\), which is **4**. ### Step 4: Find the unit digit of \(5^{(6^7)}\) 1. Calculate \(6^7\): \[ 6^7 = 279936 \] 2. The unit digit of any power of 5 is always **5**. ### Step 5: Find the unit digit of \(6^{(7^8)}\) 1. Calculate \(7^8\): \[ 7^8 = 5764801 \] 2. The unit digit of any power of 6 is always **6**. ### Step 6: Find the unit digit of \(7^{(8^9)}\) 1. Calculate \(8^9\): \[ 8^9 = 134217728 \] 2. The unit digits of powers of 7 cycle every 4: \(7, 9, 3, 1\). 3. To find \(7^{134217728}\), we find \(134217728 \mod 4\): \[ 134217728 \mod 4 = 0 \] Thus, the unit digit of \(7^{134217728}\) is the same as \(7^4\), which is **1**. ### Step 7: Combine the unit digits Now we multiply the unit digits we found: - From \(2^{(3^4)}\): **2** - From \(3^{(4^5)}\): **1** - From \(4^{(5^6)}\): **4** - From \(5^{(6^7)}\): **5** - From \(6^{(7^8)}\): **6** - From \(7^{(8^9)}\): **1** Calculating the unit digit of the product: \[ 2 \times 1 \times 4 \times 5 \times 6 \times 1 \] Calculating step-by-step: 1. \(2 \times 1 = 2\) 2. \(2 \times 4 = 8\) 3. \(8 \times 5 = 40\) (unit digit is **0**) 4. \(0 \times 6 = 0\) 5. \(0 \times 1 = 0\) Thus, the final unit digit of the entire expression is **0**.
Promotional Banner

Topper's Solved these Questions

  • MENSURATION

    QUANTUM CAT|Exercise QUESTION BANK|449 Videos
  • PERCENTAGES

    QUANTUM CAT|Exercise QUESTION BANK|271 Videos

Similar Questions

Explore conceptually related problems

Find the unit digit of 3^6 xx 4^7 xx 6^3 xx 7^4 xx 8^2 xx 9^5 .

The number of zeros at the end of the product of : 2^3 xx 3^4 xx 4^5 xx 5^6 + 3^5 xx 5^7 xx 7^9 xx 8^10 + 4^5 xx 5^6 xx 6^7 xx 7^8 - 10^2 xx 15^3 xx 20^4 is :

The unit digit of expression (1 xx 2 xx 3 xx 4 xx 5 xx 6 xx 7 xx 8 xx 9 xx 10)/(100) .

Write the numeral whose expanded form is given below: ( i ) 6 xx 10^(4)+3 xx 10^(3)+0 xx 10^(2)+7 xx 10^(1)+8 xx 10^(0) ( ii ) 9 xx 10^(6)+7 xx 10^(5)+0 xx 10^(4)+3 xx 10^(3)+2 xx 10^(2)+9 xx 10^(1)+6 xx 10^(0) ( iii ) 8 xx 10^(5)+6 xx 10^(4)+4 xx 10^(3)+2 xx 10^(2)+9 xx 10^(1)+6 xx 10^(0)

Calculate the following a. (6.7 xx 10^(5)) xx (4.6 xx 10^(4)) b. (7.6 xx 10^(7)) xx (3.8 xx 10^(-4)) c. (6.8 xx 10^(-3)) xx (5.2 xx 10^(-4)) d. (6.7 xx 10^(5)) / (4.6 xx 10^(4)) e. (7.6 xx 10^(7)) / (3.8 xx 10^(-4)) f. (6.8 xx 10^(-3)) / (3.8 xx 10^(-4)) g. 7.65 xx 10^(2) + 2.72 xx 10^(3) h. 7.87 xx 10^(-4) - 2.61 xx 10^(-5)

Find the products : (i) (-2) xx 3 xx (-4) " " (ii) 2 xx (-5) xx (-6) " " (iii) (-8) xx 3 xx 5 (iv) 8 xx 7 xx (-10) " " (v) (-3) xx (-7) xx (-6)

QUANTUM CAT-NUMBER SYSTEM-QUESTION BANK
  1. If p/q and r/s are two rational numbers then the relation |p/q| < |r...

    Text Solution

    |

  2. If u^v + v^w + w^x = 0 For every negative integer u, v, w, x the value...

    Text Solution

    |

  3. The unit digit of 2^(3^4) xx 3^(4^5) xx 4^(5^6) xx 5^(6^7) xx 6^(7^8) ...

    Text Solution

    |

  4. If (a-7)(b-10)(c-12) = 1000, the least possible value of (a+b+c) equal...

    Text Solution

    |

  5. If the number 23^(32) - 9 is divided by 16, then the remainder is :

    Text Solution

    |

  6. If (x-5)(y+6)(z-8) = 1331, the minimum value of x+y+z is :

    Text Solution

    |

  7. If x+y+z = 21, the maximum value of (x-6)(y+7)(z-4) is :

    Text Solution

    |

  8. The remainder R when 3^(37)+4^(37) is divided by 7 is :

    Text Solution

    |

  9. 7^(74) - 4^(74) is divisible by :

    Text Solution

    |

  10. The factorial of a number n is exactly divisible by (2^(11) xx 11^2) ...

    Text Solution

    |

  11. The number of zeros at the end of the product of : 2^3xx3^4xx4^5xx5^...

    Text Solution

    |

  12. A nine digit number abcdefght is such that a is divisible by 1, ab is...

    Text Solution

    |

  13. If Minimum (x,y,z) = Minimum of (xy, yz, zx) Maximum (x,y,z) = Maxi...

    Text Solution

    |

  14. If Minimum (x,y,z) = Minimum of (xy, yz, zx) Maximum (x,y,z) = Maxi...

    Text Solution

    |

  15. If Minimum (x,y,z) = Minimum of (xy, yz, zx) Maximum (x,y,z) = Maxi...

    Text Solution

    |

  16. When (55)(10) represented in base 25 then the expression is

    Text Solution

    |

  17. For (P,Q)gt0 the number 340 PQQ is divisible by both 3 and 8 then the ...

    Text Solution

    |

  18. A typist while typing the numbers from 600 to 799 mistakenly he typed...

    Text Solution

    |

  19. If p and q are two distinct inegers such that p^2 - pq = 0 then we can...

    Text Solution

    |

  20. In a survey it was found that YTC sells the cigarettes of Rs. 15990 pe...

    Text Solution

    |