Home
Class 14
MATHS
If (x^2+1/x^2)=6 then the value of (x-1/...

If `(x^2+1/x^2)=6` then the value of `(x-1/x)` is

A

2

B

3

C

-2

D

both(a) and ©

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x^2 + \frac{1}{x^2} = 6 \) and we need to find the value of \( x - \frac{1}{x} \), we can follow these steps: ### Step 1: Use the identity We know that: \[ x^2 + \frac{1}{x^2} = \left(x - \frac{1}{x}\right)^2 + 2 \] This means we can express \( x^2 + \frac{1}{x^2} \) in terms of \( x - \frac{1}{x} \). ### Step 2: Substitute the known value Given \( x^2 + \frac{1}{x^2} = 6 \), we can substitute this into the identity: \[ 6 = \left(x - \frac{1}{x}\right)^2 + 2 \] ### Step 3: Rearrange the equation Subtract 2 from both sides: \[ 6 - 2 = \left(x - \frac{1}{x}\right)^2 \] \[ 4 = \left(x - \frac{1}{x}\right)^2 \] ### Step 4: Take the square root Now, we take the square root of both sides: \[ x - \frac{1}{x} = \pm 2 \] ### Step 5: Conclusion Thus, the values of \( x - \frac{1}{x} \) are: \[ x - \frac{1}{x} = 2 \quad \text{or} \quad x - \frac{1}{x} = -2 \] ### Final Answer The values of \( x - \frac{1}{x} \) are \( 2 \) and \( -2 \). ---
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|72 Videos
  • FUNCTIONS AND GRAPHS

    QUANTUM CAT|Exercise QUESTION BANK|286 Videos

Similar Questions

Explore conceptually related problems

If (x-1/x)^2=3 then the value of x^6+1/x^6 equals यदि (x-1/x)^2=3 तो x^6+1/x^6 का मान निकालें।

If x+1/x=2 ,then the value of x^2+1/x^2 is :

If x^2-6x+1=0 , then the value of (x^4+1/x^2) div (x^2+1) is: अगर x^2-6x+1=0 , है तो (x^4+1/x^2) div (x^2+1) का मान है:

If x^2- 6x + 1= 0 , then the value of (x^4+1/x^2) div (x^2+1) is यदि x^2- 6x + 1= 0 है, तो (x^4+1/x^2) div (x^2+1) का मान क्या होगा ?

If x + 1/x = 2 , then the value of x^2 + 1/(x^2) is :

If x^2 + 1/x^2 = 6 , find the value of x^4 + 1/x^4