Home
Class 14
MATHS
If (x^3+1/x^3)=2 then the value of (x+1/...

If `(x^3+1/x^3)=2` then the value of `(x+1/x)` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x + \frac{1}{x} \) given that \( x^3 + \frac{1}{x^3} = 2 \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ x^3 + \frac{1}{x^3} = 2 \] 2. **Recall the identity**: We can use the identity that relates \( x^3 + \frac{1}{x^3} \) to \( x + \frac{1}{x} \): \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right)^3 - 3 \left( x + \frac{1}{x} \right) \] Let \( y = x + \frac{1}{x} \). Then we can rewrite the equation as: \[ y^3 - 3y = 2 \] 3. **Rearrange the equation**: Rearranging gives us: \[ y^3 - 3y - 2 = 0 \] 4. **Solve the cubic equation**: We can try to find rational roots using the Rational Root Theorem. Testing \( y = 2 \): \[ 2^3 - 3(2) - 2 = 8 - 6 - 2 = 0 \] Thus, \( y = 2 \) is a root. 5. **Conclusion**: Since \( y = x + \frac{1}{x} \), we have: \[ x + \frac{1}{x} = 2 \] ### Final Answer: The value of \( x + \frac{1}{x} \) is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|72 Videos
  • FUNCTIONS AND GRAPHS

    QUANTUM CAT|Exercise QUESTION BANK|286 Videos

Similar Questions

Explore conceptually related problems

If x^2 - 3x +1=0, then the value of x +1/x is

If (x +1/x) = 2 , then find the value of (x^3 + 1//x^3) + (x^(18) + 1//x^(18))

If x-1/x=3 , then the value of x^3-1/x^3 is

If x^(3)+(1)/(x^(3))=110 then the value of x+(1)/(x) is