Home
Class 14
MATHS
If (x^4+1/x^4)=119 then the value of (x^...

If `(x^4+1/x^4)=119` then the value of `(x^3-1/x^3)` is:

A

49

B

27

C

36

D

63

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 - \frac{1}{x^3} \) given that \( x^4 + \frac{1}{x^4} = 119 \). ### Step 1: Rewrite the equation We start with the equation: \[ x^4 + \frac{1}{x^4} = 119 \] We can add 2 to both sides: \[ x^4 + \frac{1}{x^4} + 2 = 119 + 2 \] This simplifies to: \[ x^4 + \frac{1}{x^4} + 2 = 121 \] ### Step 2: Recognize the square Notice that \( x^4 + \frac{1}{x^4} + 2 \) can be rewritten using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \). Here, let \( a = x^2 \) and \( b = \frac{1}{x^2} \): \[ (x^2 + \frac{1}{x^2})^2 = 121 \] ### Step 3: Take the square root Taking the square root of both sides gives: \[ x^2 + \frac{1}{x^2} = \sqrt{121} = 11 \quad \text{(we only take the positive root since squares are non-negative)} \] ### Step 4: Find \( x - \frac{1}{x} \) We can now find \( x - \frac{1}{x} \) using the identity: \[ x^2 + \frac{1}{x^2} = (x - \frac{1}{x})^2 + 2 \] Substituting the value we found: \[ 11 = (x - \frac{1}{x})^2 + 2 \] Subtracting 2 from both sides: \[ (x - \frac{1}{x})^2 = 9 \] Taking the square root: \[ x - \frac{1}{x} = \sqrt{9} = 3 \quad \text{(again, we take the positive root)} \] ### Step 5: Find \( x^3 - \frac{1}{x^3} \) Now we can find \( x^3 - \frac{1}{x^3} \) using the identity: \[ x^3 - \frac{1}{x^3} = (x - \frac{1}{x}) \left((x - \frac{1}{x})^2 + 3\right) \] Substituting the value we found: \[ x^3 - \frac{1}{x^3} = 3 \left(3^2 + 3\right) \] Calculating: \[ = 3 \left(9 + 3\right) = 3 \times 12 = 36 \] ### Final Answer Thus, the value of \( x^3 - \frac{1}{x^3} \) is: \[ \boxed{36} \]
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|72 Videos
  • FUNCTIONS AND GRAPHS

    QUANTUM CAT|Exercise QUESTION BANK|286 Videos

Similar Questions

Explore conceptually related problems

If x is real and x^(4)+(1)/(x^(4))=119 , then value of (x-(1)/(x)) is

If x^(4)+(1)/(x^(4))=119, find the value of x^(3)-(1)/(x^(3))

If x<0 and x^(4)+(1)/(x^(4))=47, then the value of x^(3)+(1)/(x^(3)) is

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If x^4 + (1)/(x^4) =727 , then find the value of x^3 - (1)/(x^3)

If x^(4)+(1)/(x^(4))=47, find the value of x^(3)+1/x^(3)