Home
Class 14
MATHS
If m^2-4m+1=0 then the value of (m^3+1/m...

If `m^2-4m+1=0` then the value of `(m^3+1/m^3)` is:

A

48

B

52

C

64

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( m^2 - 4m + 1 = 0 \) and find the value of \( m^3 + \frac{1}{m^3} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the quadratic equation: \[ m^2 - 4m + 1 = 0 \] We can use the quadratic formula: \[ m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -4 \), and \( c = 1 \). Plugging in these values: \[ m = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 - 4}}{2} = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3} \] ### Step 2: Find \( m + \frac{1}{m} \) Next, we need to find \( m + \frac{1}{m} \). We can express \( \frac{1}{m} \) in terms of \( m \): \[ \frac{1}{m} = \frac{1}{2 \pm \sqrt{3}} \] To rationalize this, we multiply the numerator and denominator by the conjugate: \[ \frac{1}{m} = \frac{2 \mp \sqrt{3}}{(2 \pm \sqrt{3})(2 \mp \sqrt{3})} = \frac{2 \mp \sqrt{3}}{4 - 3} = 2 \mp \sqrt{3} \] Thus, we have: \[ m + \frac{1}{m} = (2 \pm \sqrt{3}) + (2 \mp \sqrt{3}) = 4 \] ### Step 3: Find \( m^3 + \frac{1}{m^3} \) We can use the identity: \[ m^3 + \frac{1}{m^3} = \left(m + \frac{1}{m}\right)^3 - 3\left(m + \frac{1}{m}\right) \] Substituting \( m + \frac{1}{m} = 4 \): \[ m^3 + \frac{1}{m^3} = 4^3 - 3 \cdot 4 \] Calculating this: \[ = 64 - 12 = 52 \] ### Final Answer Thus, the value of \( m^3 + \frac{1}{m^3} \) is: \[ \boxed{52} \]
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|72 Videos
  • FUNCTIONS AND GRAPHS

    QUANTUM CAT|Exercise QUESTION BANK|286 Videos

Similar Questions

Explore conceptually related problems

If m=- 4 , n=-2 then the value of m^3 - 3m^2 + 3m + 3n + 3n^2 + n^3 is

If the tangent to the curve x^(3)-y^(2) = 0 at (m^(2), -m^(2)) is parallel to y= -(1)/(m) x-2m^(3) , then the value of m^(3) is

If the value of m^(4)+(1)/(m^(4))=119 then the value of |m^(3)-(1)/(m^(3))|=

If x= ( root(3) (m+1) + root(3) (m-1))/( root(3) (m+1) - root(3) (m-1)) then the value of x^3 - 3mx^2 +3x -m is

If m_1,m_2 are the slopes of the two tangents that are drawn from (2,3) to the parabola y^2=4x , then the value of 1/m_1+1/m_2 is