Home
Class 14
MATHS
If (x+y+z)=0 then the value of (x^3+y^3+...

If (x+y+z)=0 then the value of `(x^3+y^3+z^3)` is:

A

`3x^3y^3z^3`

B

3xyz

C

xyz

D

3(x+y+z)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: **Step 1:** Given that \( x + y + z = 0 \). **Step 2:** We use the identity for the sum of cubes: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] **Step 3:** Substitute \( x + y + z = 0 \) into the identity: \[ x^3 + y^3 + z^3 - 3xyz = 0 \cdot (x^2 + y^2 + z^2 - xy - yz - zx) \] **Step 4:** Since anything multiplied by zero is zero, we have: \[ x^3 + y^3 + z^3 - 3xyz = 0 \] **Step 5:** Rearranging the equation gives us: \[ x^3 + y^3 + z^3 = 3xyz \] Thus, the value of \( x^3 + y^3 + z^3 \) is \( 3xyz \). ### Final Answer: \[ x^3 + y^3 + z^3 = 3xyz \] ---
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|72 Videos
  • FUNCTIONS AND GRAPHS

    QUANTUM CAT|Exercise QUESTION BANK|286 Videos

Similar Questions

Explore conceptually related problems

If x + y + z = 6 and x^2 + y^2 + z^2= 20 then the value of x^3 + y^3 + z^3 - 3xyz is

If x+y+z=0 then find the value of x^(3)+y^(3)+z^(3)

If x=3, y=2 and z=-1 , then the value of (x^3+y^3+1)/(y^3-z^3) is

if x = 332 , y= 333 , z, =335 then the value of x^3 + y^3 +z^3- 3 xyz is

If x^(1//3) + y^(1//3) + z^(1//3) = 0 , then the value of (x + y + z)^3 is :