Home
Class 14
MATHS
The factors of x(y^2-z^2)+y(z^2-x^2)+z(x...

The factors of `x(y^2-z^2)+y(z^2-x^2)+z(x^2-y^2)` are:

A

(x-y)(y-z)(z-x)

B

(x+y)(y+z)(z+x)

C

(y-x)(z-y)(x-z)

D

(x+y)(z-y)(x-z)

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( x(y^2 - z^2) + y(z^2 - x^2) + z(x^2 - y^2) \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x(y^2 - z^2) + y(z^2 - x^2) + z(x^2 - y^2) \] We can use the difference of squares formula \( a^2 - b^2 = (a - b)(a + b) \) to rewrite the terms: \[ = x(y - z)(y + z) + y(z - x)(z + x) + z(x - y)(x + y) \] ### Step 2: Expand the expression Next, we will expand each term: \[ = xy^2 - xz^2 + yz^2 - yx^2 + zx^2 - zy^2 \] Rearranging gives: \[ = xy^2 - zy^2 + yz^2 - yx^2 + zx^2 - xz^2 \] ### Step 3: Group the terms Now, we can group the terms: \[ = (xy^2 - zy^2) + (yz^2 - yx^2) + (zx^2 - xz^2) \] Factoring out common terms from each group: \[ = y^2(x - z) + z^2(y - x) + x^2(z - y) \] ### Step 4: Factor out common factors Now we can factor out \( (x - y)(y - z)(z - x) \): \[ = (x - y)(y - z)(z - x) \] ### Final Expression Thus, the factors of the expression \( x(y^2 - z^2) + y(z^2 - x^2) + z(x^2 - y^2) \) are: \[ (x - y)(y - z)(z - x) \]
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|72 Videos
  • FUNCTIONS AND GRAPHS

    QUANTUM CAT|Exercise QUESTION BANK|286 Videos

Similar Questions

Explore conceptually related problems

Factors of -5x^2 y^2 z are

If x+y+z=xzy , prove that : x(1-y^2) (1-z^2) + y(1-z^2) (1-x^2) + z (1-x^2) (1-y^2) = 4xyz .

Factorization by taking out the common factors: x(x^(2)+y^(2)-z^(2))+y(-x^(2)-y^(2)+z^(2))-z(x^(2)+y^(2)-z^(2))

x(y^(2)-z^(2))+y(z^(2)-x^(2))+z(x^(2)-y^(2)) is divisible by

The following steps are involved in finding the value of (a^(x+y))^(x-y)(a^(y+z))^(y-z)(a^(z+x))^(z-x) . Arrange them in sequantial order. (A) a^((x+y)(x-y).a^(y+z)(y-z).a^((z+x)(z-x)) (B) a^0=1 (C) a^(x^2-y^2).a^(y^2-z^2).a^(z^2-x^2) (D) a^(x^2-y^2+y^2-z^2+z^2-x^2)

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2))