Home
Class 14
MATHS
(a+b)^3-(a-b)^3 can be factorized as:...

`(a+b)^3-(a-b)^3` can be factorized as:

A

`2a(a^2+3b^2)`

B

`2a(3a^2+b^2)`

C

`2b(3a^2+b^2)`

D

`2a(a^2+3b^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \((a+b)^3 - (a-b)^3\), we can follow these steps: ### Step 1: Expand both cubes We start by using the formula for the cube of a binomial, which states that: \[ (x+y)^3 = x^3 + y^3 + 3xy(x+y) \] Applying this to both \((a+b)^3\) and \((a-b)^3\): 1. For \((a+b)^3\): \[ (a+b)^3 = a^3 + b^3 + 3ab(a+b) \] 2. For \((a-b)^3\): \[ (a-b)^3 = a^3 - b^3 - 3ab(a-b) \] ### Step 2: Substitute the expansions into the expression Now we substitute these expansions into the original expression: \[ (a+b)^3 - (a-b)^3 = \left(a^3 + b^3 + 3ab(a+b)\right) - \left(a^3 - b^3 - 3ab(a-b)\right) \] ### Step 3: Simplify the expression Distributing the negative sign in the second part: \[ = a^3 + b^3 + 3ab(a+b) - a^3 + b^3 + 3ab(a-b) \] Now, combine like terms: \[ = (a^3 - a^3) + (b^3 + b^3) + 3ab(a+b) + 3ab(a-b) \] This simplifies to: \[ = 2b^3 + 3ab(a+b) + 3ab(a-b) \] ### Step 4: Combine the terms involving \(ab\) Now we combine the terms involving \(ab\): \[ 3ab(a+b) + 3ab(a-b) = 3ab(a+b + a-b) = 3ab(2a) = 6a^2b \] So now we have: \[ = 2b^3 + 6a^2b \] ### Step 5: Factor out the common terms We can factor out \(2b\) from the expression: \[ = 2b(b^2 + 3a^2) \] ### Final Result Thus, the factorization of \((a+b)^3 - (a-b)^3\) is: \[ \boxed{2b(b^2 + 3a^2)} \]
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|72 Videos
  • FUNCTIONS AND GRAPHS

    QUANTUM CAT|Exercise QUESTION BANK|286 Videos

Similar Questions

Explore conceptually related problems

The expression (a-b)^(3)+(b-c)^(3)+(c-a)^(3) can be factorized as (a)(a-b)(b-c)(c-a)(b)3(a-b)(b-c)(c-a)(c)-3(a-b)(b-c)(c-a)(d)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

factorize 2x^(2) - 5xy + 3y^(2) , and use your result to factorize 2(3a-b)^(2) - 5(3a-b)(2a-b) + 3(2a-b)^(2) . The factors are

Factors of (a+b)^(3)-(a-b)^(3) are

If x-(2)/(3) and x+3 are factors of the quadratic polynomial ax^(2)+7x+b , then find the values of a and b .

Factorize (a+b)^3-a-b

The factors of (a-b)^3+(b-c)^3+(c-a)^3 are:

Resolve a^(3)-b^(3)+1+3ab into factors.

Prove that (a-b) is a factor of (a^(3)-b^(3)) .

The factors of (a -b)^(3) + (b-c)^(3) + (c -a)^(3) is ____