Home
Class 14
MATHS
The factors of (a-b)^3+(b-c)^3+(c-a)^3 a...

The factors of `(a-b)^3+(b-c)^3+(c-a)^3` are:

A

`(a+b+c)(a^2+b^2+c^2+ab+bc+ac)`

B

`(a+b+c)(a^2+b^2+c^2-ab-bc-ac)`

C

3(a-b)(b-c)(c-a)

D

(a-b)(b-c)(c-a)

Text Solution

AI Generated Solution

The correct Answer is:
To find the factors of the expression \((a-b)^3 + (b-c)^3 + (c-a)^3\), we can use a well-known algebraic identity. Here’s a step-by-step solution: ### Step 1: Identify the variables Let: - \(x = a - b\) - \(y = b - c\) - \(z = c - a\) ### Step 2: Check if \(x + y + z = 0\) Now, we need to check if \(x + y + z = 0\): \[ x + y + z = (a - b) + (b - c) + (c - a) \] When we simplify this: \[ = a - b + b - c + c - a = 0 \] Thus, \(x + y + z = 0\). ### Step 3: Use the identity for cubes Since \(x + y + z = 0\), we can use the identity: \[ x^3 + y^3 + z^3 = 3xyz \] Applying this to our expression: \[ (a-b)^3 + (b-c)^3 + (c-a)^3 = 3(a-b)(b-c)(c-a) \] ### Step 4: Write the final factorization Therefore, the factors of the expression \((a-b)^3 + (b-c)^3 + (c-a)^3\) are: \[ 3(a-b)(b-c)(c-a) \] ### Conclusion The factors of \((a-b)^3 + (b-c)^3 + (c-a)^3\) are \(3(a-b)(b-c)(c-a)\). ---
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|72 Videos
  • FUNCTIONS AND GRAPHS

    QUANTUM CAT|Exercise QUESTION BANK|286 Videos

Similar Questions

Explore conceptually related problems

The factors of (a -b)^(3) + (b-c)^(3) + (c -a)^(3) is ____

One of the factor of (a-2b)^(3)+(2a-c)^(3)-(a+2c)^(3)-3(a+2b)(2a-c)(a+2c)

The expression (a-b)^(3)+(b-c)^(3)+(c-a)^(3) can be factorized as (a)(a-b)(b-c)(c-a)(b)3(a-b)(b-c)(c-a)(c)-3(a-b)(b-c)(c-a)(d)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

One of the factor of (a+2b)^(3)+(2a-c)^(3)-(a+2c)^(3)+3(a+2b)(2a-c)(a+2c) is

Factorize: (a-3b)^(3)+(3b-c)^(3)+(c-a)^(3)

Factorize : (i)(a-b)^3+(b-c)^3+(c-a)^3 (ii) x^3(y-z)^3+y^3(z-x)^3+z^3(x-y)^3