Home
Class 14
MATHS
In a right angled triangle ABC, angle B ...

In a right angled triangle ABC, `angle B` is right angle, side AB is half of the hypotenuse. AE is parallel to median BD and CE is parallel to BA. What is the ratio of length of BC to that of EC ?

A

A)`sqrt2 : 1`

B

B)`sqrt3 : 2`

C

C)`sqrt5 : sqrt3`

D

D)can't be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the Triangle Configuration We have a right-angled triangle ABC where angle B is the right angle. Given that side AB is half of the hypotenuse AC, we can denote: - Let AB = x - Therefore, AC = 2x (since AB is half of AC). ### Step 2: Use the Pythagorean Theorem In triangle ABC, we can apply the Pythagorean theorem: \[ AC^2 = AB^2 + BC^2 \] Substituting the values we have: \[ (2x)^2 = x^2 + BC^2 \] \[ 4x^2 = x^2 + BC^2 \] \[ BC^2 = 4x^2 - x^2 \] \[ BC^2 = 3x^2 \] Taking the square root: \[ BC = x\sqrt{3} \] ### Step 3: Analyze the Parallel Lines We are given that AE is parallel to median BD and CE is parallel to AB. Since BD is a median, it divides AC into two equal segments. Therefore, D is the midpoint of AC. ### Step 4: Determine the Length of EC Since CE is parallel to AB, triangle AEC is similar to triangle ABC. The angles in triangle AEC will also be 60 degrees (as derived from the properties of the angles in the parallelogram formed by the parallel lines). This means that triangle AEC is also an equilateral triangle. Since AB = x, and AE is parallel to BD, we can conclude that: - AE = EC (due to the properties of similar triangles). ### Step 5: Calculate the Length of EC From the properties of triangle AEC, since all sides are equal: - EC = 2 units (as derived from the properties of the triangle). ### Step 6: Find the Ratio of BC to EC Now we can find the ratio: \[ \text{Ratio of } BC \text{ to } EC = \frac{BC}{EC} = \frac{x\sqrt{3}}{2} \] ### Step 7: Simplify the Ratio To express the ratio in a simplified form: \[ \text{Ratio} = \frac{\sqrt{3}}{2} \] ### Final Answer The ratio of the length of BC to that of EC is: \[ \sqrt{3} : 2 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPHS

    QUANTUM CAT|Exercise QUESTION BANK|286 Videos
  • LOGARITHM

    QUANTUM CAT|Exercise QUESTION BANK|159 Videos

Similar Questions

Explore conceptually related problems

In a right angle triangle ABC, angleA is right angle DE is parallel to the hypotenuse BC and the length of DE is 65% the length of BC, what is the area of DeltaADE , if the area of DeltaABC is 68 cm^(2) ?

In triangle ABC, angle B is right angled,AC=2 and A(2,2),B(1,3) then the length of the median AD is

In the right angled triangle, sides making right angle are 9cm and 12cm . Find the length of the hypotenuse.

In a right angled triangle ABC, median BD divides right angle in 2 : 1 find the area of Delta if BD = 10 cm angle B = 90^(@)

In a right angled triangle base BC= 15 cm and sinB=(4)/(5) , then what is the length of hypotenuse AB ?

In a right-angled triangle ABC, if angle B = 90° , BC = 3 cm and AC = 5 cm, then the length of side AB is

In a right angled triangle, with angle of A being right angle, the side AB is of length 4 cm and BC is 15 cm. What is the length of side AC?

In a right angled triangle ABC, the angle A is 90^@ . What is the value of secB, if BC is 5 cm and AB is 3 cm

QUANTUM CAT-GEOMETRY-QUESTION BANK
  1. In a triangle all the three angles A,B and C can take :

    Text Solution

    |

  2. (1000^6)/(10^15) = ?

    Text Solution

    |

  3. In a right angled triangle ABC, angle B is right angle, side AB is hal...

    Text Solution

    |

  4. In an equilateral triangle ABC, AO, BO and CO are the angle bisectors ...

    Text Solution

    |

  5. Two trains Punjab mail and Lucknow mail starts simultaneously from Pat...

    Text Solution

    |

  6. In the propagation of polarised light waves, the angle between the pla...

    Text Solution

    |

  7. In DeltaABC angle B is 90^(@) and AD : BD = 3 : 2 and CE : BE = 5 : 2 ...

    Text Solution

    |

  8. In a triangle ABC with side AB = AC and angle BAC = 20^@, D is a point...

    Text Solution

    |

  9. Find the number of triangles in the given figure .

    Text Solution

    |

  10. In the given figure ABC is a triangle in which CDEFG is a pentagon. Tr...

    Text Solution

    |

  11. PQRS is a quadrilateral which is formed by joining the mid-points of a...

    Text Solution

    |

  12. ABCD is a quadrilateral in which (z)/(y)=(y)/(x)=(x)/(w)=k and k is an...

    Text Solution

    |

  13. In the adjoining figure 'O' is the centre of the circle and PQ, PR and...

    Text Solution

    |

  14. The number of points of intersection of the diagonals of a regular hex...

    Text Solution

    |

  15. Evaluate : 28% of 400 + 45 % of 250

    Text Solution

    |

  16. In the adjoining figure ABCD is a rectangle. Find the maximum number o...

    Text Solution

    |

  17. ABC is an isosceles triangle and AC, BC are the tangent at M and N res...

    Text Solution

    |

  18. ABC is an isosceles triangle and AC, BC are the tangent at M and N res...

    Text Solution

    |

  19. In the adjoining figure O is the centre of the circle with radius r’ A...

    Text Solution

    |

  20. 8900 ÷ 6 ÷ 4 = ?

    Text Solution

    |