Home
Class 14
MATHS
14p^2+27p+9=0 56q^2-3q-9=0...

`14p^2+27p+9=0`
`56q^2-3q-9=0`

A

`pltq`

B

`pgtq`

C

`pleqq`

D

p = q

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \(14p^2 + 27p + 9 = 0\) and \(56q^2 - 3q - 9 = 0\), we will find the values of \(p\) and \(q\) and then compare them. ### Step 1: Solve for \(p\) in the equation \(14p^2 + 27p + 9 = 0\) 1. **Factor the quadratic equation**: We can rewrite the equation as: \[ 14p^2 + 21p + 6p + 9 = 0 \] Now, group the terms: \[ (14p^2 + 21p) + (6p + 9) = 0 \] Factor out common terms: \[ 7p(2p + 3) + 3(2p + 3) = 0 \] Now, factor out \((2p + 3)\): \[ (7p + 3)(2p + 3) = 0 \] 2. **Find the values of \(p\)**: Set each factor to zero: \[ 7p + 3 = 0 \quad \Rightarrow \quad p = -\frac{3}{7} \] \[ 2p + 3 = 0 \quad \Rightarrow \quad p = -\frac{3}{2} \] Thus, the values of \(p\) are: \[ p_1 = -\frac{3}{7}, \quad p_2 = -\frac{3}{2} \] ### Step 2: Solve for \(q\) in the equation \(56q^2 - 3q - 9 = 0\) 1. **Factor the quadratic equation**: Rewrite the equation as: \[ 56q^2 + 21q - 24q - 9 = 0 \] Group the terms: \[ (56q^2 + 21q) + (-24q - 9) = 0 \] Factor out common terms: \[ 7q(8q + 3) - 3(8q + 3) = 0 \] Factor out \((8q + 3)\): \[ (7q - 3)(8q + 3) = 0 \] 2. **Find the values of \(q\)**: Set each factor to zero: \[ 7q - 3 = 0 \quad \Rightarrow \quad q = \frac{3}{7} \] \[ 8q + 3 = 0 \quad \Rightarrow \quad q = -\frac{3}{8} \] Thus, the values of \(q\) are: \[ q_1 = \frac{3}{7}, \quad q_2 = -\frac{3}{8} \] ### Step 3: Compare the values of \(p\) and \(q\) Now we will compare the values of \(p\) and \(q\): - For \(p_1 = -\frac{3}{7}\) and \(p_2 = -\frac{3}{2}\): - \(p_1 = -0.428\) and \(p_2 = -1.5\) - For \(q_1 = \frac{3}{7}\) and \(q_2 = -\frac{3}{8}\): - \(q_1 = 0.428\) and \(q_2 = -0.375\) ### Conclusion 1. Comparing \(p_1\) and \(q_1\): \[ -\frac{3}{7} < \frac{3}{7} \quad \Rightarrow \quad p_1 < q_1 \] 2. Comparing \(p_2\) and \(q_2\): \[ -\frac{3}{2} < -\frac{3}{8} \quad \Rightarrow \quad p_2 < q_2 \] Thus, in both cases, we find that \(p < q\). ### Final Answer The relation between \(p\) and \(q\) is: \[ p < q \]
Promotional Banner

Topper's Solved these Questions

  • SET THEORY

    QUANTUM CAT|Exercise QUESTION BANK|81 Videos
  • TIME AND WORK

    QUANTUM CAT|Exercise QUESTION BANK |202 Videos

Similar Questions

Explore conceptually related problems

If p&q are two real numbers satisfying the relation 2p^(2)-3p-1=0 and q^(2)+3q-2=0 respectivelyand pq!=1, then

I. p^(2) + p = 56 II. q^(2) - 17q+ 72 = 0

I. p^(2) - 7p=- 12 II. q^(2) - 3q+2=0

I. 3p^(2) + 17p+10 = 0 II. 10q^(2) +9q+2=0

I. p^(2) + 12p+35 = 0 II. 2q^(2) + 22q+56 = 0