Home
Class 14
MATHS
7p^2+4sqrt7p-5=0 sqrt77q^2-(10sqrt7+sq...

`7p^2+4sqrt7p-5=0`
`sqrt77q^2-(10sqrt7+sqrt11)q+10=0`

A

`pltq`

B

`pgtq`

C

`pleqq`

D

can't be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given quadratic equations and find the relationship between \( p \) and \( q \), we will follow these steps: ### Step 1: Solve the first quadratic equation \( 7p^2 + 4\sqrt{7}p - 5 = 0 \) We will use the quadratic formula: \[ p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 7 \), \( b = 4\sqrt{7} \), and \( c = -5 \). ### Step 2: Calculate the discriminant First, we calculate \( b^2 - 4ac \): \[ b^2 = (4\sqrt{7})^2 = 16 \cdot 7 = 112 \] \[ 4ac = 4 \cdot 7 \cdot (-5) = -140 \] Thus, the discriminant is: \[ b^2 - 4ac = 112 - (-140) = 112 + 140 = 252 \] ### Step 3: Substitute values into the quadratic formula Now we substitute \( a \), \( b \), and the discriminant into the quadratic formula: \[ p = \frac{-4\sqrt{7} \pm \sqrt{252}}{2 \cdot 7} \] ### Step 4: Simplify the square root and the equation Calculate \( \sqrt{252} \): \[ \sqrt{252} = \sqrt{36 \cdot 7} = 6\sqrt{7} \] Now substitute this back: \[ p = \frac{-4\sqrt{7} \pm 6\sqrt{7}}{14} \] ### Step 5: Find the two roots for \( p \) Calculating the two roots: 1. \( p_1 = \frac{(-4 + 6)\sqrt{7}}{14} = \frac{2\sqrt{7}}{14} = \frac{\sqrt{7}}{7} \) 2. \( p_2 = \frac{(-4 - 6)\sqrt{7}}{14} = \frac{-10\sqrt{7}}{14} = -\frac{5\sqrt{7}}{7} \) ### Step 6: Solve the second quadratic equation \( \sqrt{77}q^2 - (10\sqrt{7} + \sqrt{11})q + 10 = 0 \) Using the quadratic formula again, where \( a = \sqrt{77} \), \( b = -(10\sqrt{7} + \sqrt{11}) \), and \( c = 10 \). ### Step 7: Calculate the discriminant for the second equation Calculate \( b^2 - 4ac \): \[ b^2 = (10\sqrt{7} + \sqrt{11})^2 = 100 \cdot 7 + 20\sqrt{77} + 11 = 711 + 20\sqrt{77} \] \[ 4ac = 4 \cdot \sqrt{77} \cdot 10 = 40\sqrt{77} \] Thus, the discriminant is: \[ b^2 - 4ac = (711 + 20\sqrt{77}) - 40\sqrt{77} = 711 - 20\sqrt{77} \] ### Step 8: Substitute values into the quadratic formula for \( q \) Substituting into the quadratic formula: \[ q = \frac{10\sqrt{7} + \sqrt{11} \pm \sqrt{711 - 20\sqrt{77}}}{2\sqrt{77}} \] ### Step 9: Find the two roots for \( q \) Calculating the two roots will yield: 1. \( q_1 = \text{(some positive value)} \) 2. \( q_2 = \text{(another positive value)} \) ### Step 10: Compare the roots of \( p \) and \( q \) From the calculations: - The roots of \( p \) are \( \frac{\sqrt{7}}{7} \) (positive) and \( -\frac{5\sqrt{7}}{7} \) (negative). - The roots of \( q \) are both positive. ### Conclusion Since both roots of \( q \) are positive and one root of \( p \) is negative, we can conclude that \( q > p \).
Promotional Banner

Topper's Solved these Questions

  • SET THEORY

    QUANTUM CAT|Exercise QUESTION BANK|81 Videos
  • TIME AND WORK

    QUANTUM CAT|Exercise QUESTION BANK |202 Videos

Similar Questions

Explore conceptually related problems

7sqrt(2)x^(2)-10x-4sqrt(2)

sqrt7 - 3/5 sqrt7 + 2sqrt7

sqrt(7+2sqrt(10))

The greatest among sqrt(7) - sqrt(5) , sqrt(5) - sqrt(3) , sqrt(9) - sqrt(7) , sqrt(11) - sqrt(9) is

The smallest of sqrt(8)+sqrt(5),sqrt(7)+sqrt(6),sqrt(10)+sqrt(3) and sqrt(11)+sqrt(2) is

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}

(5sqrt(7)+2sqrt(7))(6sqrt(7)+3sqrt(7))=?

QUANTUM CAT-THEORY OF EQUATIONS-QUESTION BANK
  1. 14p^2+27p+9=0 56q^2-3q-9=0

    Text Solution

    |

  2. p^2-42p-343=0 16/sqrtq+9/sqrtq=5sqrtq

    Text Solution

    |

  3. 7p^2+4sqrt7p-5=0 sqrt77q^2-(10sqrt7+sqrt11)q+10=0

    Text Solution

    |

  4. p^3-9p^2+18p=0 q^3-q^2=0

    Text Solution

    |

  5. 25p^2-55sqrt11p+198=0 25q^2+55sqrt11q+198=0

    Text Solution

    |

  6. 25p^2-35sqrt11p-198=0 25q^2+35sqrt11q-198=0

    Text Solution

    |

  7. p^2-8sqrt83+45=0 q^2-12sqrt3+105=0

    Text Solution

    |

  8. p^2+2|p|+35=0 q^2+2q+35=0

    Text Solution

    |

  9. For the extremely high values of x what will be the tendency of the gr...

    Text Solution

    |

  10. When x approaches -oo, then what will be the tendency of the graph 5x^...

    Text Solution

    |

  11. Which one of the following is true about the polynomial function y=-7x...

    Text Solution

    |

  12. Find the domain of the rational polynomial f(x)=(x^3+2x^2-4x-8)/(x^4-x...

    Text Solution

    |

  13. Find the domain of the rational polynomial f(x)=(x^3+2x^2-4x-8)/(x^4-x...

    Text Solution

    |

  14. Find the roots of the rational polynomial equation (x^2-6x+8)/(x+2)=0.

    Text Solution

    |

  15. Nature of roots and Location of roots of quadratic equation

    Text Solution

    |

  16. What cannot be the exact number of real roots in a polynomial of degre...

    Text Solution

    |

  17. Find the possible number of positive and negative real roots of x^4+7x...

    Text Solution

    |

  18. Find the possible number of positive and negative real roots of 2x^4-x...

    Text Solution

    |

  19. Find the possible number of positive and negative real roots of x^5+x^...

    Text Solution

    |

  20. Find the possible number of positive and negative real roots of x^5-x^...

    Text Solution

    |