Home
Class 14
MATHS
25p^2-55sqrt11p+198=0 25q^2+55sqrt11q+...

`25p^2-55sqrt11p+198=0`
`25q^2+55sqrt11q+198=0`

A

`pltq`

B

`pgtq`

C

`pleqq`

D

can't be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given quadratic equations and find the relationship between \( p \) and \( q \), we will follow these steps: ### Step 1: Write down the equations We have two quadratic equations: 1. \( 25p^2 - 55\sqrt{11}p + 198 = 0 \) 2. \( 25q^2 + 55\sqrt{11}q + 198 = 0 \) ### Step 2: Identify coefficients For the first equation \( 25p^2 - 55\sqrt{11}p + 198 = 0 \): - \( a = 25 \) - \( b = -55\sqrt{11} \) - \( c = 198 \) For the second equation \( 25q^2 + 55\sqrt{11}q + 198 = 0 \): - \( a = 25 \) - \( b = 55\sqrt{11} \) - \( c = 198 \) ### Step 3: Apply the quadratic formula The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] #### For \( p \): Substituting the values into the formula: \[ p = \frac{-(-55\sqrt{11}) \pm \sqrt{(-55\sqrt{11})^2 - 4 \cdot 25 \cdot 198}}{2 \cdot 25} \] Calculating \( b^2 - 4ac \): \[ (-55\sqrt{11})^2 = 3025 \cdot 11 = 33275 \] \[ 4 \cdot 25 \cdot 198 = 19800 \] \[ b^2 - 4ac = 33275 - 19800 = 13475 \] Now substituting back into the formula: \[ p = \frac{55\sqrt{11} \pm \sqrt{13475}}{50} \] #### For \( q \): Substituting the values into the formula: \[ q = \frac{-55\sqrt{11} \pm \sqrt{(55\sqrt{11})^2 - 4 \cdot 25 \cdot 198}}{2 \cdot 25} \] Calculating \( b^2 - 4ac \) (same as above): \[ (55\sqrt{11})^2 = 3025 \cdot 11 = 33275 \] \[ b^2 - 4ac = 33275 - 19800 = 13475 \] Now substituting back into the formula: \[ q = \frac{-55\sqrt{11} \pm \sqrt{13475}}{50} \] ### Step 4: Find the roots 1. For \( p \): - \( p_1 = \frac{55\sqrt{11} + \sqrt{13475}}{50} \) - \( p_2 = \frac{55\sqrt{11} - \sqrt{13475}}{50} \) 2. For \( q \): - \( q_1 = \frac{-55\sqrt{11} + \sqrt{13475}}{50} \) - \( q_2 = \frac{-55\sqrt{11} - \sqrt{13475}}{50} \) ### Step 5: Compare the roots From the calculations, we observe: - Both roots \( p_1 \) and \( p_2 \) are positive. - Both roots \( q_1 \) and \( q_2 \) are negative. ### Conclusion Since both roots of \( p \) are positive and both roots of \( q \) are negative, we can conclude that \( p \) is greater than \( q \).
Promotional Banner

Topper's Solved these Questions

  • SET THEORY

    QUANTUM CAT|Exercise QUESTION BANK|81 Videos
  • TIME AND WORK

    QUANTUM CAT|Exercise QUESTION BANK |202 Videos

Similar Questions

Explore conceptually related problems

I. 2p^(2) + 20p+50 = 0 II. q^(2) = 25

x=(sqrt(p^2+q^2)+sqrt(p^2-q^2))/(sqrt(p^2+q^2)-sqrt(p^2-q^2)) then q^2x^2-2p^2x+q^2=? (A)    3    (B)    -1    (C)    -2    (D)    0    

x=(sqrt(p^2+q^2)+sqrt(p^2-q^2))/(sqrt(p^2+q^2)-sqrt(p^2-q^2)) then q^2x^2-2p^2x+q^2=? (A)Â Â Â 3 Â Â Â (B) Â Â Â -1 Â Â Â (C) Â Â Â -2 Â Â Â (D)Â Â Â 0 Â Â Â

sqrt(11)+sqrt(3),sqrt(20),sqrt(5)sqrt(15)+sqrt(22),sqrt(25),sqrt(10)3+sqrt(55),sqrt(15),sqrt(25)]|=

5, 11, 25, 55, 117, 243, ….

QUANTUM CAT-THEORY OF EQUATIONS-QUESTION BANK
  1. 7p^2+4sqrt7p-5=0 sqrt77q^2-(10sqrt7+sqrt11)q+10=0

    Text Solution

    |

  2. p^3-9p^2+18p=0 q^3-q^2=0

    Text Solution

    |

  3. 25p^2-55sqrt11p+198=0 25q^2+55sqrt11q+198=0

    Text Solution

    |

  4. 25p^2-35sqrt11p-198=0 25q^2+35sqrt11q-198=0

    Text Solution

    |

  5. p^2-8sqrt83+45=0 q^2-12sqrt3+105=0

    Text Solution

    |

  6. p^2+2|p|+35=0 q^2+2q+35=0

    Text Solution

    |

  7. For the extremely high values of x what will be the tendency of the gr...

    Text Solution

    |

  8. When x approaches -oo, then what will be the tendency of the graph 5x^...

    Text Solution

    |

  9. Which one of the following is true about the polynomial function y=-7x...

    Text Solution

    |

  10. Find the domain of the rational polynomial f(x)=(x^3+2x^2-4x-8)/(x^4-x...

    Text Solution

    |

  11. Find the domain of the rational polynomial f(x)=(x^3+2x^2-4x-8)/(x^4-x...

    Text Solution

    |

  12. Find the roots of the rational polynomial equation (x^2-6x+8)/(x+2)=0.

    Text Solution

    |

  13. Nature of roots and Location of roots of quadratic equation

    Text Solution

    |

  14. What cannot be the exact number of real roots in a polynomial of degre...

    Text Solution

    |

  15. Find the possible number of positive and negative real roots of x^4+7x...

    Text Solution

    |

  16. Find the possible number of positive and negative real roots of 2x^4-x...

    Text Solution

    |

  17. Find the possible number of positive and negative real roots of x^5+x^...

    Text Solution

    |

  18. Find the possible number of positive and negative real roots of x^5-x^...

    Text Solution

    |

  19. Find the possible number of positive and negative real roots of 4x^7+3...

    Text Solution

    |

  20. Find the values that satisfy the polynomial inequation x(x+3)(x-5)gt0.

    Text Solution

    |