Home
Class 14
MATHS
sqrt(x/(1-x))+sqrt((1-x)/x)= 13/6...

`sqrt(x/(1-x))+sqrt((1-x)/x)= 13/6`

A

`13/4,5`

B

`4/13,9/13`

C

`4/13,6`

D

none

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:sqrt((x)/(1-x))+sqrt((1-x)/(x))=2(1)/(6)

sqrt(x-6)-sqrt(10-x)>=1

What is the value of x in the equation sqrt((1+x)/(x))-sqrt((x)/(1+x))=(1)/(sqrt(6)) ?

If x= sqrt3/2 , then the value of (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) is equal to: यदि x= sqrt3/2 , (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) का मान ज्ञात करें :

If x=sqrt3/2 then sqrt(1+x)/(1+sqrt(1+x))+sqrt(1-x)/(1-sqrt(1-x))=

If sqrt((1-x^(6)))+sqrt((1-y^(6)))=a(x^(3)-y^(3)) , a is constant and (dy)/(dx)=f(x,y) sqrt(((1-y^(6))/(1-x^(6)))) , then