Home
Class 14
MATHS
sqrt(x^(2)-9x+20)-sqrt(x^(2)-12x+32)=sqr...

`sqrt(x^(2)-9x+20)-sqrt(x^(2)-12x+32)=sqrt(2x^(2)-25x+68)`:

A

4,9

B

3,9

C

2,4

D

2,6

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(9-x^2)/x

THe value of x which satisfy the equation (sqrt(5x^(2)-8x+3))-sqrt((5x^(2)-9x+4))=sqrt((2x^(2)-2x))-sqrt((2x^(2)-3x+1))

The number of real solutions of sqrt(x^(2)-4x+3)+sqrt(x^(2)-9)=sqrt(4x^(2)-14x+6)

sqrt(x^(2)+x+4)+sqrt(x^(2)+x+1)=sqrt(2x^(2)+2x+4)

sqrt(2)x^(2)+9x+4sqrt(2)

int(dx)/(sqrt(x^(2)-9)+sqrt(x^(2)-4))=

"int(x^(2))/(sqrt(9-25x^(2)))dx

(sqrt(x))^(2)-sqrt(x)-12=0

lim_(x rarr2)((sqrt(x^(2)-4x+5)-1)((x+2)^(9/2)-512))/((x-2)(sqrt(x^(2)-4x+20)-4))