Home
Class 14
MATHS
((1)/(x+1)+(1)/(x+5))=((1)/(x+2)+(1)/(x+...

`((1)/(x+1)+(1)/(x+5))=((1)/(x+2)+(1)/(x+4))`:

A

7

B

`-3`

C

`-5`

D

4

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Add: (3x^(2) - (1)/(5)x + (7)/(3)) + ((-1)/(4)x^(2) + (1)/(3)x - (1)/(6)) + (-2x^(2) - (1)/(2)x + 5)

lim_(x rarr a){[(a^((1)/(2))+x^((1)/(2)))/(a^((1)/(4))-x^((1)/(4))))^(-1)-(2(ax)^((1)/(4)))/(x^((3)/(4))-a^((1)/(4))x^((1)/(2))+a^((1)/(2))x^((1)/(4))-a^((3)/(4)))]^(-1)-sqrt(2)^(log_(4)a)}^(8)

Find the products: (x-(1)/(x))(x+(1)/(x))(x^(2)+(1)/(x^(2)))(x^(4)+(1)/(x^(4)))

Find the continued product: (x-(1)/(x))(x+(1)/(x))(x^(2)+(1)/(x^(2)))(x^(4)+(1)/(x^(4)))

[1+(1)/(x+1)][1+(1)/(x+2)][1+(1)/(x+3)][1+(1)/(x+4)] is (x+5)/(x+1) (b) (x+1)/(x+5) (c) 1+(1)/(x+5) (d) (1)/(x+5)

((x+1)-(2x+4))/(3-5x)=(1)/(23)

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)