Home
Class 14
MATHS
Find the roots of equation 2x^4+x^3-11x^...

Find the roots of equation `2x^4+x^3-11x^2+x+2=0`

A

`(-8-sqrt5)/2,(-8+sqrt5)/2,1/2,2`

B

`(-3-sqrt5)/2,(-3+sqrt5)/2,-2,2`

C

`(-3-sqrt7)/2,(-3+sqrt7)/2,1/2,2`

D

`(-3-sqrt5)/2,(-3+sqrt5)/2,1/2,2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the roots of the equation \( 2x^4 + x^3 - 11x^2 + x + 2 = 0 \), we can follow these steps: ### Step 1: Rewrite the Equation The given equation is: \[ 2x^4 + x^3 - 11x^2 + x + 2 = 0 \] ### Step 2: Divide by \( x^2 \) To simplify the equation, we can divide the entire equation by \( x^2 \) (assuming \( x \neq 0 \)): \[ \frac{2x^4}{x^2} + \frac{x^3}{x^2} - \frac{11x^2}{x^2} + \frac{x}{x^2} + \frac{2}{x^2} = 0 \] This simplifies to: \[ 2x^2 + x - 11 + \frac{1}{x} + \frac{2}{x^2} = 0 \] ### Step 3: Combine Terms We can rewrite the equation as: \[ 2x^2 + x - 11 + \left( x + \frac{1}{x} \right) + \left( \frac{2}{x^2} \right) = 0 \] Let \( y = x + \frac{1}{x} \). Then, we have: \[ x^2 + \frac{1}{x^2} = y^2 - 2 \] Thus, the equation becomes: \[ 2(y^2 - 2) + y - 11 = 0 \] This simplifies to: \[ 2y^2 + y - 15 = 0 \] ### Step 4: Factor the Quadratic Equation Now we need to factor or use the quadratic formula to solve for \( y \): \[ 2y^2 + y - 15 = 0 \] Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-15)}}{2 \cdot 2} \] Calculating the discriminant: \[ 1 + 120 = 121 \] Thus: \[ y = \frac{-1 \pm 11}{4} \] This gives us two values for \( y \): 1. \( y = \frac{10}{4} = \frac{5}{2} \) 2. \( y = \frac{-12}{4} = -3 \) ### Step 5: Solve for \( x \) Now we will solve for \( x \) in both cases. **Case 1: \( y = \frac{5}{2} \)** \[ x + \frac{1}{x} = \frac{5}{2} \] Multiplying through by \( 2x \): \[ 2x^2 - 5x + 2 = 0 \] Using the quadratic formula: \[ x = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot 2}}{2 \cdot 2} \] Calculating the discriminant: \[ 25 - 16 = 9 \] Thus: \[ x = \frac{5 \pm 3}{4} \] This gives us: 1. \( x = 2 \) 2. \( x = \frac{1}{2} \) **Case 2: \( y = -3 \)** \[ x + \frac{1}{x} = -3 \] Multiplying through by \( x \): \[ x^2 + 3x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] Calculating the discriminant: \[ 9 - 4 = 5 \] Thus: \[ x = \frac{-3 \pm \sqrt{5}}{2} \] ### Final Roots The roots of the original equation \( 2x^4 + x^3 - 11x^2 + x + 2 = 0 \) are: 1. \( x = 2 \) 2. \( x = \frac{1}{2} \) 3. \( x = \frac{-3 + \sqrt{5}}{2} \) 4. \( x = \frac{-3 - \sqrt{5}}{2} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the roots of the equation 3x^(2)+2x=0

Find the roots of the equation 2x^(2)-9x-18=0

If the roots of the equation 4x^(3)-12x^(2)+11x+k=0 are in A.P.Then K=

If the roots of the equation x^(3)-11x^(2)+36x-36=0 are in H.P.then the middle root is

Find the roots of the equation x^(2) + 2x -143 = 0

In a DeltaABC , if the sides a, b, c are the roots of the equation x^(3)-11x^(2)+38x-40=0 , then (cosA)/a+(cosB)/b+(cosC)/c=

Find roots equation 2x^(2)-x-3=0 .

Find the nature of root of equation 2x^(2)-x-2=0